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Abstract 
 

Demonstration of a strategy to perform two-dimensional diode laser tomography 

using a priori knowledge from symmetry arguments and computational fluid dynamic 

(CFD) calculations is presented for a flat flame burner.  The strategy uses an optimization 

technique to determine flame diameter and location using a vector quantization approach.  

Next, the variance in a training set, produced from CFD calculations, is captured using 

principal components analysis.  The information in the training set allows interpolation 

between beam paths resulting in temperature and density maps.  Finally, the TDLAS 

temperature and density maps are shown to agree with traditional thermocouple 

measurements of the flat flame burner to within five percent.   Preliminary tomography 

results using the same strategy are then presented for a super-sonic flow through an 

isolator, a length of wind tunnel necessary to keep the shock wave produced by the 

combustor from reaching the inlet. 
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DEMONSTRATION OF A STRATEGY TO PERFORM TWO-DIMENSIONAL 
DIODE LASER TOMOGRAPHY 

 
 

I Introduction 
 

Background 
 

Since the mid 1990s, groups have used tunable diode laser absorption 

spectroscopy (TDLAS) to determine density, pressure, temperature, and velocity of 

gases.[1]  TDLAS uses a spectrally narrow, tunable laser source to scan an absorption 

feature of a particular gas.  The ability to measure gas density, pressure, temperature, and 

velocity in the flow of a supersonic combustion ramjet (scramjet) engine would allow 

engine performance to be monitored.  Optimizing engine performance in a scramjet 

presents many technical challenges including determination of mass capture as a function 

of vehicle attitude and condition in the inlet of the engine; ignition, flame holding, and 

fuel injection in the combustor; and maximizing combustion efficiency and thrust 

generation in the exhaust plane.[2]  Although other techniques exist for obtaining 

information about the flow, TDLAS can be used to monitor all of these variables in 

ground tests and also has the potential to be miniaturized for flight vehicles.  

Alternative techniques involving probe and wall measurements, while proven, do 

not necessarily provide a complete picture of the flow.[3]  Wall measurements are limited 

to pressure and temperature readings at the boundary of the flow.  Computational fluid 

dynamic (CFD) calculations and probe measurements show that flow conditions vary 

 1



www.manaraa.com

greatly from the core of the flow to the extremities.  TDLAS improves upon wall 

measurements by providing an average measurement across the entire line of sight thus 

providing information in the core of the flow.  Probe measurements are beneficial in that 

they can be moved or built in an array to investigate conditions throughout the flow.  

However, their presence perturbs the flow necessitating a correction to the measurement.  

TLDAS does not have this drawback because passing a laser through the flow does not 

disrupt the flow. 

TDLAS, therefore, provides another avenue for collecting information about the 

flow.  By passing a beam through the flow, a line of sight absorption measurement is 

possible.  By carefully choosing the laser wavelengths to correspond to species-specific 

absorption features, of water in the case of this study, a variety of flow properties can be 

determined.  Three lasers with nominal center wavelengths of 1391, 1392, and 1397 nm 

were used along each line of sight in this experiment.  The shape and intensity of the 

absorption features in each of the three spectra yielded information regarding temperature 

and pressure as well as the density and velocity of the species in the probed area of the 

flow.[3]   

Line of sight measurements are limited, however, in that the information gained is 

averaged along the path of the beam.  With a single beam path, therefore, no spatial 

information about the flow can be obtained.  One solution to gathering spatially resolved 

information of the flow from the line of sight measurements is to add more beam paths.  

Tomography, similar to that used in an MRI or CAT scan, is then performed by 

combining the information of multiple beam paths.  Unfortunately, methods like these 

generally require hundreds of beam paths to gain the resolution necessary to extract 
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contour information – a solution which is not feasible in flight environments or even most 

ground tests.  To overcome this problem, reduction in the number of beam paths 

necessary to perform tomography can be accomplished through the use of contour 

information gained from CFD computations or planar laser-induced fluorescence (PLIF) 

experiments.  By assuming the model gained from CFD or PLIF provides a good 

approximation of the relative variation in the flow properties, the model can be fit to the 

TDLAS line of sight information through a least squares fitting method, allowing 

intelligent interpolation between the beam paths.  Through this process of two-

dimensional tomography, spatially and temporally resolved, quantitative information 

about the flow can be obtained.[3, 4]   

Problem Statement 
 

The overall purpose of this project was to investigate the possibility of reducing 

the number of lines of sight required to perform tomography using a priori knowledge 

gained from symmetry arguments or CFD calculations.  To fulfill this purpose, the 

temperature and water concentration of a flame provided by a flat flame, McKenna type 

burner were measured six millimeters above the surface of the burner through the 

traditional method of thermocouples as well as a pressure and relative humidity probe.   

The flat flame burner consists of a circular, porous copper region, six centimeters in 

diameter.  The gas mixture, methane and air, is distributed evenly over this region and, 

when lit, provides a uniform, or flat, temperature profile across the area of the porous 

region.  The results from the thermocouple measurements were compared to the tunable 

diode laser absorption tomography results performed using an analytic two-zone model, 

an optimized computational two-zone model, and finally an optimized computational 
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CFD model of the flat flame burner.  The two-zone model, discussed in detail in Chapter 

IV, assumes two temperature regions for the flat flame burner experiment: an elevated 

temperature within the flame of the burner surrounded by room temperature air.  The 

agreement on temperature and species concentration of the two methods, tunable diode 

laser absorption tomography and thermocouple measurements, provides a proof of 

concept for the tomography strategy which was employed.  This same strategy was then 

applied to an experiment to perform tunable diode laser absorption tomography (TDLAT) 

on a vitiated supersonic flow through an isolator.  Preliminary results are discussed in 

Chapter V. 

The two-zone model was used in the implementation of two methods to determine 

temperature and species concentration. The first method, called the two-zone analytic 

method, uses TDLAS data from seven beam paths, the positions of the lines of sight 

relative to the burner, and two assumptions about the burner: the flat flame burner 

provides a flat temperature profile, and the flame is circular.  Employing some algebra 

and geometry, detailed in Chapter IV, the temperature in the center of the flame was 

found to be within 10 K of the thermocouple measurements.  The second method, called 

the two-zone computational method, used the same data, beam path measurements, and 

assumptions about the burner to obtain the same temperature and water concentration 

results computationally.  In the computational method, the two-zone model provided a 

basis image which was scaled to fit the TDLAS data using a least squares method also 

detailed in Chapter IV.  These two methods are intended to step the reader through a 

basic application of tomography using a basis derived from a priori knowledge.  Both of 

these methods agreed with the thermocouple temperature measurements and species 
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concentration calculations to within five percent for the interior of the flame and the 

surrounding room air, but because they use the two-zone model, they do not provide any 

information at the boundary layer of the flame.  The two-zone model assumes an 

instantaneous temperature change at the boundary between the surrounding room 

temperature gas and the hot circular flame.  To obtain better agreement with the 

thermocouple measurements in this region, either more beam paths along with a model 

with more temperature zones or a better understanding of how to interpolate between the 

beam paths was necessary.  CFD calculations were used to provide this information.   

The CFD model provided the information to allow interpolation between lines of 

sight, thus obtaining spatially resolved temperature and species concentration maps of the 

flat flame burner.  Although the temperature and diameter of the CFD calculations did 

not agree with thermocouple measurements, the shape of the temperature profile in the 

boundary region showed good agreement with the thermocouple data.  By scaling the 

CFD model to represent a range of peak temperatures and peak species concentrations of 

the burner, a training set was developed for each of the water absorption features used for 

temperature and species concentration determination.  The training sets for each of the 

absorption features consisted of a series of maps of the frequency integrated absorption 

coefficients for a range of scaled temperatures and species concentration.   

Two algorithms were proposed to find the optimum basis set from the training set: 

vector quantization (VQ) and principal components analysis (PCA).[5, 6]  Both of these 

algorithms can be found in Appendix C in the programs Create_VQbasis and 

Create_basisv2, respectively.  While PCA performed well in the creation of basis sets, 

VQ showed limited utility for the flat flame burner.  Instead, VQ was used to optimize 
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the fits to the two models, to aid in providing averages in time-resolved oscillations in the 

isolator experiment, and to create a basis for the near real-time tomography performed 

during data collection for the isolator experiment.  PCA was used to create the basis sets, 

capturing variance in each training set and resulting in a basis set which could be reduced 

in size.[5]  A least squares approach was used to fit the CFD basis sets to the TDLAS 

measurements.  The basis sets were then added in linear combination resulting in a 

tomographic map which agreed with the TDLAS data from the multiple lines of sight.  

The PCA was performed because the CFD models covering all of the possible 

states could be very large, thus requiring many lines of sight to make the fit well defined.  

To reduce the number of lines of sight necessary, PCA was used on the training sets to 

create much smaller basis sets which still represented the majority of possible conditions 

of the flow yet maintained a well posed mathematical problem with fewer lines of sight.  

The compression of the training sets was possible due to the high degree of redundancy 

in the varied conditions of the CFD models.  The research questions under investigation 

for this thesis were how to create the best possible basis set from the CFD models and 

how to obtain the best possible fit of the measured TDLAS data to the basis set while still 

maintaining a well conditioned problem.     

Scope 
 

This thesis investigated a strategy to perform tomography of a flat flame burner 

and vitiated super-sonic flow using TDLAS measurements from multiple lines of sight 

resulting in quantitative temperature, density, and pressure maps.  Temperature and 

species concentration maps of the flat flame burner, obtained using tomography were 

compared to a thermocouple temperature profile and calculated species concentrations of 
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the flame.  This comparison provided verification for the fit of the TDLAS measurements 

to the two-zone and CFD models.  The favorable comparisons of both the temperature 

and species concentration obtained using tomography to those obtained using 

thermocouples lend added credibility to the optimized fitting routine applied to the super-

sonic flow data by Lindstrom.[3]  Preliminary results for the super-sonic flow are 

presented in chapter 6. 

Objectives 
 

In this thesis, the following objectives were accomplished: 

i. Verify the utility of TDLAS for the flat flame burner by comparing with 

thermocouple measurements. 

ii. Investigate the number of beam paths required to achieve accurate 

tomographic temperature and density maps for the flat flame burner. 

iii. Evaluate the performance of PCA in reducing the dimensionality of training 

sets and enabling tomography with a limited number of beam paths. 

iv. Provide a proof of concept for the application of TDLAT performed with 

limited optical access in more complicated flows. 

Approach/Methodology 
 

A temperature profile of a flat flame burner measured with thermocouples was 

used as a comparison for the TDLAT.  Tomography was performed using both the two-

zone model as well as the CFD model using the data from 7, 63, and 119 lines of sight for 

each model.  This provided a proof of concept for the strategy developed to perform two-
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dimensional tomography of the flat flame burner.  The proof of concept was used to 

provide confidence in the tomography results performed on the isolator data. 

Equipment and Materials 
 

The flat flame burner experiments were performed in the Propulsion Directorate 

of the Air Force Research Laboratory at Wright-Patterson Air Force Base.  The first 

experiment measured the temperature profile of a flat flame, McKenna type burner using 

an array of three type B thermocouples of varying bead and wire diameters and two type 

K thermocouples.  The second burner experiment was performed with an array of tunable 

diode lasers and the required data acquisition system to measure water absorption 

features which were used to obtain a similar temperature profile. 

The isolator experiments were performed in Research Cell 18 at Wright-Patterson 

Air Force Base.  These experiments used the same tunable diode lasers and data 

acquisition system as the TDLAS burner experiment to measure water absorption in the 

flow through the isolator portion of a supersonic wind tunnel. 

Data processing and tomography were performed on a standard desktop computer 

with a 2.39 GHz processor and 2.0 GB of RAM.  Algorithm development was 

accomplished primarily in Matlab, though the Igor curve fitting suite was used to process 

the raw data from the tunable diode lasers.[7] 

Preview 
 

The remainder of this thesis is organized into five chapters.  Chapter 2 provides 

the necessary spectroscopic background and theory to obtain a tomographic temperature 

map from raw TDLAS measurements.  Chapters 3, 4, and 5 provide the background, 
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experimental setup, and results for each of the three experiments: the flat flame 

thermocouple experiment, the flat flame TDLAT experiment, and the isolator TDLAT 

experiment.  Chapter 3 explains the traditional thermocouple methods used to obtain a 

temperature profile for the flat flame burner.  The results of the thermocouple 

measurements provide a point of comparison for the remaining TDLAS measurements 

and tomography.  Chapter 4 includes the results for both the thermocouple and TDLAS 

experiments on the flat flame burner along with the comparison of the two.  This 

comparison validates the strategy implemented to perform two-dimensional tomography 

on a flow.  Chapter 5 provides the preliminary results of the isolator experiment which 

employed the same strategy to perform two-dimensional tomography as the flat flame 

burner.  Using only line of sight TDLAS measurements, the CFD was shown to be 

missing the first reflection in the shock train.  Due to this inaccuracy in the CFD 

calculations for the isolator, optimization techniques used in the flat flame experiment to 

determine diameter and center location were modified to adjust the shock shape, location, 

and wall thickness in the isolator CFD model.  The resulting fits to the isolator TDLAS 

data are presented.  The thesis concludes with Chapter 6 where a summary, overview of 

future studies, and recommendations for future research are discussed.  
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II Theory 
 

Introduction 
 

This chapter develops the theory behind TDLAS and the tomography performed 

using TDLAS measurements.  It begins with a description of the water molecule 

vibrational and rotational energy levels that provide the transitions which were used for 

TDLAS.  Next, Beer’s law is presented.  It governs the absorption of light by the water 

transitions.  The chapter then provides an overview of the spectroscopic background 

material necessary to understand TDLAS.  Finally, a discussion of tomography as it is 

applied to this thesis is presented.   

The Water Molecule 
 

The burner and isolator experiments rely on absorption spectra which are the 

result of the absorption of laser light by water molecules in a flow.  As the laser is tuned 

through a frequency range, transitions in the water molecule attenuate the light according 

to the temperature and concentration of the water molecules.  Water was selected as the 

species of measurement due to its abundance of transitions in the range of wavelengths 

where commercial telecommunications lasers have been developed.  From 

thermodynamics, molecules have 3N degrees of freedom where N is the number of atoms 

in the molecule.  For the water molecule, three of its nine degrees of freedom are 

translational and three are rotational, leaving three vibrational modes.  Each vibrational 

state is composed of many rotational states. The figure below, adapted from Bernath, 

shows the vibrational modes of the water molecule.[8] 
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ν3 3756 cm-1 
antisymmetric stretch 

 
Figure 1. The normal modes of vibration of H2O 

 
While many water vibrational transitions exist within the wavelength range of the lasers 

used, the transitions used in this research occurred between rotational levels in the 000 

and 101 vibrational transition.  The three numbers in the vibrational level labeling 

scheme refer to the quanta of energy in each of the vibrational modes, symmetric stretch, 

bend, and antisymmetric stretch respectively.[8]  The transition from 000 to 101, 

therefore, indicates that the absorption features used were the result of incident light 

exciting water molecules from their vibrational ground state to an excited state with one 

quanta of symmetric stretch and one quanta of antisymmetric stretch. 

Specific rotational transitions of the 000 to 101 vibrational transition were 

selected based on the population density, obtained using Boltzmann statistics, of the 

ground vibrational state.  For the molecule to absorb light at a transition, it must have a 

population in the initial state.  Thus, transitions were selected based on the population of 

the initial state over the expected temperature range of the experiment.   

In rotational spectroscopy, energy levels are referred to by their total angular 

momentum, J, and the projection of the total angular momentum on the molecular axis of 

highest symmetry, z.  As shown below in the figure adapted from Bernath, water is a 

planar molecule where the highest degree of rotational symmetry is about the 180° 
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rotationally symmetric axis through the oxygen atom in the plane of the molecule.[8]   

For a planar molecule, the x-axis is chosen to be out of the plane. 
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Figure 2. The water molecule 

 
The origin, which defines the distances f, g, and h, is chosen to be the center of mass of 

the molecule.  The moments of inertia for the rigid rotor model of the water molecule are 

therefore: 
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Axes are also labeled according to the magnitude of their respective moments of inertia 

such that  

     CBA III ≤≤ .     (2) 

In the case of H2O where r = .0958 Å, θ = 104.5°, mH = 1.00 atomic mass unit (u), mO = 

16.00 u, f = 0.0757 Å, g = 0.5213 Å, and h = 0.0652 Å, the moments of inertia are 
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The water molecule is thus an asymmetric top because none of the moments of inertia are 

equal.  Asymmetric tops provide a large number of transitions because the dipole 

moments along each of the axes, a, b, and c, are non-vanishing.[8] 

 Once the axes are defined, the rotational energy levels and selection rules for 

linear and symmetric top molecules can be developed using the Hamiltonian operator for 

the rigid rotor in the Schrödinger equation.  In the case of asymmetric tops, however, 

there is no general analytical solution to the Schrödinger equation.  Instead, solutions are 

usually found numerically.   

 For this research, HITRAN was used to provide the transition parameters 

including initial state energy, transition energy, and line intensity.  HITRAN is a 

collection of spectroscopic parameters created by the Air Force Cambridge Research 

Laboratories.[9]  The line intensity of a transition, S', is shown below in SI units of 

m2-s−1.  It is proportional to the evaluation of the dipole moment operator, S10, in the 

Schrödinger equation.  It combines the probability of a transition with thermodynamic 

equilibrium Boltzmann statistics given by:[8] 

   10
//

0

10
2

)1(
)(3

2' 100 See
Thcq

S kThvkTE −− −=
ε

νπ
.   (4) 

Here, ν10 is the transition frequency between rotational levels of the ground vibrational 

state, 0, and the upper vibrational state, 1, h is Planck’s constant, c is the speed of light, 

q(T) is the partition function, E0 is the energy of the initial state, or term energy, k is 

Boltzmann’s constant, T is the temperature, and S10 is the line strength given by the 

dipole moment operator.  The line intensity, S', can be related to the cross section of the 

transition as well as the absorption coefficient and the Einstein coefficients as shown in 

the next section.[8] 
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Beer’s Law 
 

When light passes through a gas, absorption or stimulated emission may occur 

when the energy of the incoming photons matches the energy gap between two levels.  A 

transition from a rotational state, of the initial vibrational state to a rotational state of the 

excited vibrational state is shown in the figure below, adapted from Bernath.[8]  The 

energy of the incoming photon, E, is equal to hc divided by the wavelength, λ, as shown 

in Figure 3.   

0

1

λ
hcE =

0

1

λ
hcE =

 
Figure 3. A transition of the water molecule from the initial state, 0 to the upper state, 1 

 

Beer’s law describes the intensity, I, of light after it passes through a distance, l, of gas.  

Given an incoming radiation density, ρ, and the Einstein coefficients for stimulated 

emission and absorption,  and , the rate equation for the upper state is: 01→B 01←B

    001101
1 NBNB

dt
dN

ρρ ←→ +−= ,    (5) 

where N1 and N0 are the populations, given in molecules-cm-3, of the excited and initial 

state respectively. The incoming radiation density, ρ = hv10F/c, has units of kg-s-2-m-1, 

where h is Planck’s constant in J-s, v10 is the transition frequency in Hz, F is the 

incoming flux in photons m-2-s-1, and c is the speed of light in m-s-1.  Note that the 
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Einstein coefficients for absorption and stimulated emission,  and , both having 

units of m-s-kg-1 from the following equation: 

01→B 01←B

   )(
3

2
1010

1
2

0

2

01
1

0
01 νν

ε
π

−== ←→ gS
gh

B
g
g

B ,   (6) 

where g0 = 2J0 + 1 and g1 = 2J1 + 1 are the degeneracies of state 0 and 1 with total 

angular momentum J0 and J1, 0ε  is the permittivity of free space in C2-N-1-m-2, h is 

Planck’s constant in J-s, g(v-v10) is the lineshape function with units of seconds, and S10 is 

the line strength in C2-m2: 

    ∑∑=
1 0

2
001110

M M

MJMJS μ .   (7) 

In Equation (7), J0 and J1 are the total angular momentum of a molecule in state 0 or 1 

and M0 and M1 are the projection of J0 and J1 onto the lab reference frame for those 

states.  Rearranging Equation (5) and using Equation (6) yields:  

    )( 1
1

0
001

1 N
g
g

NB
dt

dN
−= ←ρ .    (8) 

Replacing the Einstein absorption coefficient with its definition from Equation (6) 

produces: 

   ))((
3

2
1

1

0
01010

0
2

0

2
1 N

g
g

NgS
ghdt

dN
−−= νν

ε
πρ .  (9) 

Adding the definition of ρ = hv10F/c generates: 
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Then, the cross section, σ, with units of m2 is defined as follows: 
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with S10 in C2-m2, v10 in Hz, g(v-v10) in seconds, ε0 in C2-N-1-m-2, h in J s, and c in m-s-1.  

Substituting the cross section from Equation (11) into Equation (10) results in the form 

below: [8, 10] 

        )( 1
1

0
0

1 N
g
g

NF
dt

dN
−= σ .    (12) 

 Once the rate equation is defined as shown in Equation (12), the derivation of 

Beer’s law follows by considering the change in incident flux caused by an area of one 

square meter with thickness dx as shown in the figure below, adapted from Bernath.[8] 

dx
l

I0=F0hν

1m

1m

dx
l

I0=F0hν

1m

1m

 
Figure 4. A volume of gas 

In this case, the rate of change of flux over the distance dx is: 

    dxN
g
g
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1
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The result after integration is: 
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where l is the path length through the gas, F = hv/I, and F0 = hv/I0.  Exponentiation of 

each side of Equation (14) gives the common form of Beer’s law: 
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 Finally, the HITRAN line intensity can be related to the line strength in Equation 

(7) by the following formula: 

    )1(
)(3

2' //
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1010
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100 kThkTE ee
Thcq
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ε
νπ −− −= .   (16) 

Equation (16) gives the HITRAN line intensity in SI units of m2-s-1.  The HITRAN 

literature, however, uses units of cm-1/(molecules cm-2).  This form is shown below:[9, 

11] 
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where 10
~v  has units of cm-1,  

     
0

10
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SR = ,     (18) 

and S10 from Equation (7) is given in Debye2 instead of the SI units of C2-m2.  Assuming 

thermodynamic equilibrium, Maxwell-Boltzmann statistics are used to eliminate  and 

from Equation (15) with the following relationships: 
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In Equation (19), NT is the total species concentration in molecules-cm-3 and q  is the 

partition function. Using Equation (19) to rewrite Equation (15) results in the form of 

Beer’s law shown here: 

)(T
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Using the definition of S' from Equation (17) yields: 
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Integrating over a single absorption line eliminates the line shape function resulting in the 

final useful form: 
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where A(v) (unitless) is the natural logarithm of the ratio of the intensities of the incident 

light to exiting light measured by the tunable diode laser along its line of sight and α~  is 

the frequency integrated absorption coefficient.  If v is reported in wavenumbers, then the 

integral of A has units of wavenumbers, S' has the HITRAN units of cm-1/(molecules cm-

2), N is given in molecules/cm3, l is given in cm, and α~  has units of cm-2. A more 

detailed development stepping from Equation (15) to Equation (22) is given in Appendix 

A.  The plot of A(v) versus v is the absorption spectrum for a laser along a line of sight.[8, 

12]   

Tunable Diode Laser Absorption Spectroscopy 
 

TDLAS uses a tunable diode laser to measure the absorption of water transitions 

over a path length.  Beer’s law can then be used to extract temperature and density from 

the frequency integrated absorption coefficients of two or more transitions.  A tunable 

diode laser consists of a cavity in a semiconductor material where the intensity is 

controlled by the input current.  As the current to the tunable diode laser is ramped, the 

change in temperature alters the cavity length of the laser.  Thus, current modulation 

permits the diode to be tuned across a wavelength range.  The laser output is sent through 

the gas of interest and collected on the other side.  The natural logarithm of the reference 
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beam divided by the spectrum recorded at the detector gives the absorption spectrum for 

a line of sight, A(v).  Integrating this absorption spectrum over frequency provides the 

integrated absorption along the path, ∫A(v)dυ, as seen in Equation (22). 

Integrating the absorption spectra from multiple transitions along a single line of 

sight allows an average temperature to be determined.  This was accomplished by 

scanning three lasers, each in their own wavelength range, to measure multiple absorption 

features.  As discussed at the beginning of the chapter, telecommunications diode lasers 

were used in this experiment, so the probed wavelength regions (approximately 1391 nm 

to 1397 nm) fell within the larger wavelength range of the telecommunications diode 

lasers.  Another consideration when choosing the specific nominal wavelength of each 

diode laser was the term energies (the energy of the initial state) of the transitions found 

around the nominal wavelength.  In thermal equilibrium, the population, and therefore 

ability to absorb incoming photons, of the initial state of a transition depends on 

temperature.  Thus, if the term energy of a transition is too high to be filled thermally at 

the temperatures seen in an experiment, the transition will not provide enough absorption 

to measure with TDLAS.  Likewise, if temperatures in an experiment are high, transitions 

with low term energies may already have a reduced initial state population.  Even higher 

temperatures may not cause a significant reduction in initial state population and 

therefore the absorption through these regions would not be changed.  Thus, transitions 

were chosen which had initial state populations that produce measurable differences in 

absorption when they encounter different temperatures in the temperature ranges 

provided by the experiments. 
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Two methods were used to calculate the temperature from the integrated 

absorptions.  The first method used the data from two transitions to obtain an estimate of 

the temperature.  Using Equation (17), the line intensity at any temperature can be 

calculated from a given line intensity at a reference temperature using the equation shown 

below:[11]   
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Then, using the ratio of two integrated absorptions from Equation (22), the temperature 

can be calculated as shown here:[12] 
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where the subscripts 1 and 2 on all of the variables refer to the transition with which each 

variable is associated.  The ratio of the stimulated emission terms from the two transitions 

is approximately equal to one, and therefore not included, as shown below: 
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Equation (24) can then be solved for the temperature, T, using the HITRAN line 

intensities and measured frequency integrated absorptions.[12] This method can be 

performed on each line of sight, before tomography, using an analytic two-ring model 

approach, or after tomography for each individual pixel.  Both of these models are 

discussed further in the TDLAS Burner results section in Chapter IV. 

 The second method of temperature determination plots two or more integrated 

absorptions against the term energy of each transition in what is called a Boltzmann plot.  

Substituting Equation (17) into Equation (22) and rearranging results in:[3, 12] 
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The Boltzmann plot is generated by placeing the left hand side of Equation (26) on the 

ordinate and the term energy, E0, on the abscissa.  Omitting the stimulated emission term, 

ln[ ], causes at most only a few percent error at 2500 K and was therefore 

generally omitted from the calculation.  A linear fit was accomplished for the integrated 

absorptions where the slope of the fit is equal to -1/kT.  Again this method was performed 

analytically for each laser line of sight and pixel by pixel for the absorption tomographic 

maps.  Using the two-zone analytic model, the temperature from the Boltzmann plot 

agreed with the thermocouple temperature to within 10 K. 

kThcve /101 −−

 Once temperature is determined using either method, Equation (22) can be solved 

for the total concentration, NT, where the value of the partition function at TREF and T are 

given by a piecewise, third degree polynomial fit to HITRAN plots.[9, 13] NT can also be 

determined from the y-intercept of the Boltzmann plot using the same method to find the 

value of the partition function at T. 

 The pressure can be determined using the Lorentzian contribution to the width of 

the Voigt profile of the absorption or by substituting N/V = NT = P/kT from the ideal gas 

law into Equation (22), where N is the total number of molecules, V is the volume in 

cm-3, P is the pressure, k is Boltzmann’s constant, T is temperature, and NT is the total 

species concentration in molecules-cm-3.  The pressure broadening term can be 

determined from the Igor fitting routine used to fit the TDLAS measurements to 

determine integrated areas.  The pressure is then given by: 

     bp=Δ 2/1ν ,     (27) 
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where Δν1/2 is the full width at half maximum of the Lorentzian contribution to the Voigt 

line shape and b is the pressure broadening coefficient obtained from HITRAN.[8]  

Pressure determination was not completed for the flat flame burner because pressure 

within the flame was very close to the pressure in the room.  Pressure was calculated for 

the isolator.  Preliminary results are shown in Chapter V.  

Tomography 

Background 
 

While knowing the frequency integrated absorption coefficient, species density, 

temperature, or pressure along a given path is valuable information, the line integrals 

provided by TDLAS measurements do not provide any information about how these 

values are changing along the path.  Spatial variations in temperature and pressure along 

the path can give important information about the flow.  Using tomography, interpolation 

between the measured beam paths can provide the information necessary to obtain a 

spatial image of the flow using a limited number of beam paths.[14] 

Basis Set Formation 
 

Tomographic reconstruction of the flow characteristics gives much greater insight 

into the problem.  Traditional tomography requires too many lines of sight for situations 

with limited optical access.  Therefore, two models were used to take advantage of a 

priori information in the flat flame burner experiment to reduce the number of beam 

paths necessary.   

The first model used was a two-zone model.  This model assumed radial 

symmetry of the flat flame burner resulting in a hot disk surrounded by room-temperature 
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gas.  CFD calculations provided the second model used.[15]  The CFD used many of the 

parameters of the flat flame experiment to determine a radial contour of the gas 

temperature and density.  The CFD models were provided for a range of heights, from 3 

mm to 9 mm above the surface of the burner, and scaled with respect to temperature and 

water concentration to represent various potential operating conditions of the system.  

Every permutation of height above the burner, maximum temperature, and species 

concentration was used to generate frequency integrated absorption coefficient maps.  

The frequency integrated absorption coefficient,α~ , is: 

    
l

dvvA∫= )(~α .     (28) 

The collection of these images covering the range of expected operating conditions for 

the flat flame burner forms what is called a training set.  A more thorough development 

of the process to create a frequency integrated absorption map from CFD calculations is 

presented in Appendix B.  Example maps are presented in Chapter IV.  Many images in 

the training set provide similar contour information resulting in a great deal of 

redundancy in the training set.  Thus, data reduction techniques can be applied to 

consolidate the information into a basis set which can then be used to represent the 

system under investigation.  As mentioned in the introduction, two algorithms were 

applied to the CFD data to obtain the optimal basis set: vector quantization (VQ) and 

principal components analysis (PCA).  The members of the basis set resulting from PCA 

are orthogonal and can, therefore, be linearly combined to represent any vector in the 

original training set.  Using the optimal basis set and measured absorption data, a two-

dimensional temperature, density, or pressure image of the flow can be constructed.[3]   
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The VQ algorithm was not as useful for basis generation as originally expected.  

Instead, VQ was used primarily as a clustering and optimization algorithm.  It was used 

to optimize the diameter and center location for the two-zone model of the flat flame 

burner and the diameter for the CFD model of the flat flame burner.  It was also used to 

find similar shock structure in the time resolved isolator data, allowing averaging of 

similar shock structures to reduce noise and allow comparison with the isolator CFD.[16]   

Although VQ was not used for post-processed tomography, it was used to create 

the basis functions for the near real-time tomography performed during the isolator 

experiment.  Due to the high degree of redundancy found in the isolator CFD data, 

images were presorted based on the features contained within them.  The isolator CFD 

data consists of images with very distinct regions.  Conditions in the isolator vary from a 

fairly uniform flow to a shock train when backpressure is added.  The flow generally 

consists of a uniform low pressure area before the shock, the shock front, the shock train, 

and a trailing area of uniform higher pressure after the shock.  The following figure 

shows an example of the CFD results for the isolator.[3] 
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Figure 5. CFD model of frequency integrated absorption coefficient versus position in the 

isolator as backpressure is increased, blue represents low and red represents high 
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Note the position of the shock front as backpressure is increased.  While the image shows 

the entire isolator, in reality only a portion of the isolator is probed using TDLAS.  As the 

backpressure was varied, the shock moved through the window where it was measured by 

TDLAS.  A reasonable presort, therefore, of the possible images consisted of a uniform 

flow to represent the pre and post shock regions and several shapes to represent possible 

contours of the shock as it passed through the window.   

As an initial guess, the first basis set for the isolator was obtained by inspection of 

the major features in the training set.  VQ then took this initial guess as a basis set, 

classified all of the training set images according to the initial basis set, then averaged 

over all of the images in each set to create a new basis vector for each classification.  The 

algorithm then proceeded to classify all of the images in the training set according to this 

new averaged basis set and averaged again.  This process continued until the relative 

change of the new basis set from the previous basis set was within a given threshold.  

Once the training set was sufficiently classified by VQ, PCA was used on the classified 

data to produce a basis set for the projection of the TDLAS array.[6]   The VQ algorithm 

can be found in Appendix C in the program Create_VQbasis. 

The PCA used for both the near real-time tomography as well as the post-

processing tomography was accomplished by first finding the mean of the training set.  

Once the mean was determined, the projection matrix for the lines of sight from the mean 

image were calculated and subtracted from the data.  The principal components of the 

training set were then fit to the remaining data.  The principal components of the training 

set were determined by finding the eigenvalues and eigenvectors of the covariance matrix 

of the training set.  The result was a rank ordered set of images where the highest 
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eigenvalue corresponded to the image which captured the highest amount of variance.[5]  

The basis vectors in each new PCA basis set are orthogonal to each other and can 

therefore be added or subtracted in linear combinations to reconstruct any image in the 

training set.  The mean image and the first few principal components of the training set 

became the basis which was used to fit the tunable diode laser data.  The PCA algorithm 

can also be found in Appendix C in the Create_basisv2 program. 

Fitting Basis Sets to the Data 
 

Using PCA to perform tomography with the flat flame burner data allowed a 

comparison with the values obtained from traditional thermocouple measurements.  Once 

a basis set was acquired, the integrated absorptions were fit to a linear combination of the 

basis set using a least squares fitting algorithm.  The projection matrix for each basis 

image consists of the path integral of each line of sight in the basis image as shown in 

Figure 6.[14] 

~~ ~ ~~ ~

 
Figure 6. Illustration of path integrals of lines of sight in a basis image 

 
The relation below transforms the path to Cartesian coordinates as a function of θ and 

perpendicular distance from the origin, s: 
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where δ(x) is the Dirac delta function, iℜ  is the Radon transform of the ith projection, and 

ν is the frequency of the TDLAS measurement.[17]  Each beam path can then be made 

discrete by the following equation: 
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where i = 1,2,…M and M is the number of pixels in the reconstructed image.  In many 

applications, such as MRI or CAT scans, a large number of beam paths would be 

required to obtain, using Equation (30), any sort of spatial resolution.  However, using a 

priori information, like the CFD models, assumptions can be made about how contours in 

the flow will typically look.  CFD models produce very large training sets representing 

all of the possible conditions of the flow.  This presents a problem because the number of 

beam paths required to make the fit well defined increases with the number of images 

used to perform the fit.[17]  The size of the training sets can be reduced, however, using 

VQ or PCA.  The key to reducing the number of beam paths is to expand the absorption 

function in Equation (30) in terms of a smaller set of basis functions that span the 

image.[3]  By assuming that the absorption at any point in the flow can be approximated 

by a linear combination of the basis set from the CFD, Equation (29) can be simplified to: 
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where qj are the expansion coefficients for α, bj(x,y) are the basis functions, and rij is the 

ith projection of bj, iℜ bj.  Equation (29) can then be written in the simplified form shown 

below: 
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     qp ℜ= ,    (32) 

where  is the projection matrix with M columns and N rows created by completing M 

path integrals for N basis functions and 

ℜ

p  is the matrix of line of sight measurements.  A 

least squares approach is then used to solve the matrix equation, determining the 

expansion coefficient vector, q .  This results in a frequency integrated absorption 

coefficient map for a single transition.[3] 

Finally, once the optimal method for obtaining a basis set from the CFD training 

set was achieved for the flat flame burner data, the method was applied to the isolator 

data.  Values obtained in the temperature and density maps were compared to 

thermocouple measurements for the flat flame burner in Chapter IV.  Preliminary 

tomography results using a CFD model for the isolator are shown in Chapter V.   
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III Thermocouple Flat Flame Burner Results 
 

Introduction 
 

This chapter presents the results of the thermocouple experiment used to 

determine the temperature profile of a flat flame McKenna type burner.  The purpose of 

this experiment was to provide temperature measurements of the flat flame, obtained 

using traditional thermocouple measurements, to compare with the temperature results of 

the TDLAS and tomography detailed in Chapter IV.  The first section gives a brief 

historical background and explanation of the theory of thermocouples.  Next, the 

experimental setup and procedure are discussed in detail.  Then, the radiative correction, 

performed on the thermocouple data due to the high temperatures found in the flame, is 

discussed.  When inside the flame, the thermocouples became hot enough to reradiate a 

significant amount of energy, causing errors in the thermocouple readings of up to 80 K.  

A correction was performed to obtain the actual gas temperature in the flame.  Finally, 

the raw and corrected data are presented and discussed. 

Background 
 

Thermocouples were originally discovered by Thomas Seebeck in 1821.  Every 

conductive metal generates a potential difference when it is subjected to a thermal 

gradient.  If one end is subjected to a higher temperature than the other, the electrons in 

the hot end have greater energy and therefore greater velocities.  This means they are 

more likely to be found further from the hot end.  Thus, population is increased at the 

cold end resulting in an electric field and therefore a voltage difference between the two 

ends.  Thermocouples take advantage of this fact by joining two different types of 
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conductors together at one end and measuring the voltage difference between the two 

metals at the other end.[18]  Using this method, however, can only provide relative 

temperature measurements.  Therefore, modern voltage meters contain a calibrated 

lookup table to determine the actual temperature measured.  

Thermocouple Burner Setup 
 

The burner used in this experiment was a flat flame McKenna type burner.  The 

burner consisted of a 60 mm diameter disk of porous bronze through which air and fuel 

flows.  The fuel mixture was controlled by a TYLAN RO-28 meter at 1.31 standard liters 

per minute (SLPM) of Methane and 15.6 SLPM of Air.  This gave an equivalence ratio, 

or ratio of fuel to air, of 0.8.  The equivalence ratio of 0.8 means that the fuel is lean 

compared to the air, and therefore allows a complete combustion model to be assumed 

when mole fractions are calculated in Chapter IV.  The burner was cooled by a Neslab 

CFT-25 cooler with a MD-30 pump flowing water at 274 mL/min.  Temperature, 

pressure, and relative humidity in the lab were measured by a NIST traceable Vaisala 

PTU (pressure, temperature, and humidity) transmitter.  Two types of thermocouples 

were used to measure the temperature profile of the flame.  Type B thermocouples, 

consisting of a platinum-rhodium alloy, have a temperature range of approximately 600 

to 2000 K and were used to measure temperatures inside the flame.  Type K 

thermocouples are made of chromel and alumel and have a usable temperature range of 

approximately 70 to 700 K.  Temperatures outside of the flame and up to the boundary of 

the flame were measured with type K thermocouples. 

Three type B thermocouples with bead sizes of 0.33, 0.74, and 1.08 mm were 

used to measure the temperature of the flame across the center of the burner.  The bead 
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size is the diameter of the sphere joining the two thermocouple wires together.  The array 

of type B thermocouples with various bead sizes enabled the radiative correction 

performed in the next section.  The thermocouples were mounted on a translation stage 

which allowed them to be placed in the center of the burner.  The burner was also 

mounted to a translation stage allowing the thermocouples to scan the entire flame 

profile.  Thin ceramic cylinders were used to stabilize the thermocouples during the 

experiment.  Approximately one quarter inch of each thermocouple was left exposed in 

the flame to keep the heating of the ceramics from causing any dielectric effect on the 

thermocouple measurements.   A diagram and picture of the type B thermocouple array in 

the flame is shown below. 

Flame

Beads

Thermocouple
Wires

Ceramic
Holders

Flame

Beads

Thermocouple
Wires

Ceramic
Holders

Flame

Beads

Thermocouple
Wires

Ceramic
Holders

 
Figure 7. Three type B thermocouples of varying bead diameter placed 6 mm above the 

surface of the flat flame burner 
 

Two type K thermocouples were used to measure the burner profile from outside 

the flame at room temperature up to 600 K at the boundary of the flame.  Two more type 

K thermocouples were used to measure the temperature of the input and output water 

coolant to the burner.  This allowed a temperature of combustion to be calculated as 

shown in the thermocouple results section.  Radiative correction was not necessary for 

the temperatures measured by the type K thermocouples.   
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Radiative Correction 
 

In the thermocouple flat flame burner experiment, temperatures inside the flame 

were high enough that the type B thermocouples reradiated a significant amount of 

energy back into the surrounding environment as shown by the red glow in Figure 7.  

This lost energy was, therefore, not measured by the thermocouples resulting in 

erroneously low temperature readings.  The amount of energy lost is dependant on the 

surface area of the bead joining the two wires of the thermocouple.  The temperature 

measurement of the flat flame burner was therefore performed using an array of three 

type B thermocouples of varying bead diameter.  For an object in thermal equilibrium, 

the heat lost from radiation is equal to the heat gained.  In the case of the thermocouples, 

heat was gained almost completely through convection and lost almost completely 

through radiation.  Using the equation for radiation and Newton’s law of cooling, the 

equation for energy balance on the bead is shown below:[19] 
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In this equation, qrad and qconv are the amounts of heat lost to radiation and convection 

respectively, ε is the emissivity of the bead, A is the surface area of the bead, σSB is the 

Stefan-Boltzmann constant, hconv is the convective heat transfer coefficient between the 

gas flow and the bead, and Tb, Tg, and T∞ are the temperatures of the bead, gas and 

surrounding room respectively.  The true temperature of the gas was calculated by 

rearranging the previous equation into:[19]  
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then performing a linear fit to the three data points provided by the small, medium, and 

large beaded thermocouples.  Plotting Tb versus  gives Tg as the 

extrapolation to the y-intercept when d goes to zero.  In this equation, N is the Nusselt 

number for the gas and bead, ktc is the gas thermal conductivity, and d(m) is the diameter 

of the bead.  This represents the perfect thermocouple with a bead diameter of zero.  A 

bead diameter of zero has no surface area and therefore cannot radiate. 
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 However, the situation is made more complicated by the Nusselt number’s 

dependence on bead diameter, as shown here:[20] 
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where P is the Prandtl number, R is the Reynolds number, ρg is the density of the gas, U 

is the velocity of the gas, and μv is the viscosity of the gas.  This additional dependence 

was included in the emissivity calculation.  

 At each location where all three thermocouples measured the temperature, data 

was plotted according to Equation (34); and a linear fit was performed to determine the 

actual gas temperature.  Figure 8 shows an example of this process for three points near 

the center of the flame; ignoring the dependence of the Nusselt number on bead diameter.  

For the plot shown here, T∞ was calculated by averaging the temperatures from six sides 

of a cube where the bottom of the cube was the surface of the burner and the remaining 

five sides were the walls and ceiling of the room.  The ceiling and surrounding walls 
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were assumed to be 300 K and the surface of the burner was assumed to be 800 K, giving 

an average of 383 K.  The y-intercept gives Tg as 1630 K. As the emissivity and thermal 

conductivity are constant for the different bead diameters, their values had no effect on 

the gas temperature.   

 
Figure 8. Example of thermocouple correction using Equation (34) with temperatures 

from the three bead diameters near the center of the flat flame burner 
 

Results 
 
Figure 9 shows the temperature profile for the flat flame burner before the 

correction was applied.  Here the temperature lost due to radiation is readily apparent.  

The largest diameter bead recorded the lowest temperature due to its larger surface area 

allowing greater radiation back into the room.  The smallest diameter bead recorded the 

closest to the actual temperature because it is closer to a perfect thermocouple with no 

surface area and therefore no radiation of heat back into the room. 
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Figure 9. Burner Profile before correction.  Note as bead diameter increases, the 

heat lost through radiation increases and the indicated temperature is decreased 
 
The three thermocouple diameters were measured to be 0.33 ± 0.01 mm, 0.74 ± 0.01 mm, 

and 1.08 ± 0.01 mm.  Using the correction from Equation (34) for a sample three points, 

the y-intercept in Figure 8 gives the temperature that an ideal point source thermocouple 

would read.  Performing this process across the entire profile and taking the bead 

diameter dependence of the Nusselt number into account results in the following 

corrected flat flame burner profile in Figure 10 where the black linear fit comes from the 

extrapolation of the plot of Equation (34) and the colored lines are the thermocouples 

corrected independently.  The emissivity of the beads was found to be 0.22 which agrees 

well with previously published results.[21]  Note that the corrected profile gives a 

temperature of 1638 ± 10 K across the center 40 mm of the burner.  
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Figure 10. Corrected burner profile showing the corrected profile for each of the three 

bead sizes and the fit from the y-intercept of Equation (34) 
 

 Temperature at the center of the flame can also be obtained using the adiabatic 

flame temperature of the methane and air mixture.  If the adiabatic temperature of the 

combusting fuel and air mixture is known, then the true flame temperature can be 

calculated by subtracting the heat lost to the burner.  The primary source of heat loss in 

this experiment was due to the cooling of the flat flame burner with refrigerated water.  

The input and output temperatures of the water coolant were measured with type K 

thermocouples.  Using the temperature difference between the input and output 

temperatures of the water coolant along with the heat capacity of water allowed the 

calculation of the amount of heat lost to the water.  For the flow rate of 1.31 SLPM of 

methane at the equivalence ratio of 0.8 used in this experiment, the adiabatic flame 

temperature is 1997 ± 50 K.[22]  The measured temperature difference of water input to 

output of 8.16 K, the measured flow of the water of 0.27 L/min, and the specific heat of 

water of 75.38 J/mol-K give the heat transferred to the burner as 0.15 KJ/sec.  The 

measured flow of methane of 1.31 SLPM and the heat of combustion of methane of 802 
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KJ/mol give the energy released by the methane as 0.782 KJ/sec.  The fraction of energy 

removed by the water then is given by the ratio of .015 KJ/sec to 0.782 KJ/sec; or 0.19.  

The adjusted flame temperature is given as (1-0.19) × 1997 K = 1618 ± 50 K for the 

cooled flat flame burner used in this experiment.[22]    

 The temperature profile of the flat flame burner obtained through this traditional 

thermocouple measurement experiment, then further confirmed with a heat of 

combustion calculation, provides a comparison for the temperatures obtained using 

TDLAS over a single path and TDLAT with multiple paths in Chapter IV.  Also, the flat 

flame, McKenna type burner was shown to, in fact, be flat in terms of its temperature 

profile inside of the boundary region.  This lends confidence to the symmetry arguments 

used to create basis functions for tomography in the next chapter.  Additionally, the 

boundary region temperature profile was measured at 1 mm resolution using the 

thermocouple arrays, which allowed a good evaluation of CFD modeling over this region. 
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IV Burner TDLAS and Tomography Results 

Introduction 
 

The flat flame burner experiment was used as a proof of concept for the isolator 

experiment.  The flow from the flat flame burner is similar to the flow in the isolator in 

that neither flow is uniform along the line of sight of the laser.  Also, methane was used 

as the fuel for the flat flame burner and as the fuel to vitiate the flow in the isolator.  In 

both cases it provides a controlled amount of water in the flow to be observed using 

TDLAS.  The two experiments are also similar in that, although the flows are not uniform 

along the lines of sight, they provide planar symmetry.  This allows a small array of 

lasers to provide enough information to achieve two-dimensional tomographic maps of 

the frequency integrated absorption coefficient, temperature, and water concentration. 

This chapter walks through the entire experiment using tunable diode lasers to 

measure flow characteristics across the flat flame burner.  The setup is discussed first, 

including an in-depth look at the data acquisition system from the function generators 

controlling the lasers to the detection and conversion of the analog laser intensity to 

digital measurements.  Next, the logic behind the wavelength range chosen for each laser 

is presented.  The third section discusses the process of converting raw intensity data to 

absorption spectra and integrated absorption.  The theory behind the two-zone analytic 

model as well as the resulting temperature and density determination are presented next.  

Finally, the tomography section includes the application of the same two-zone model as 

well as the CFD model of the flat flame burner with a final comparison of all of the 

methods to the thermocouple experiment results from Chapter III. 
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TDLAS Burner Setup 
 

TDLAS was performed on the same flat flame McKenna type burner running at 

the same parameters used in the thermocouple experiment presented in Chapter III.  The 

cylindrical flat flame burner provided a flow with elevated water concentration and 

temperature in a simplified geometry to be observed by a laser array.  Due to the fact that 

the lines of sight pass through room temperature air on either side of the flame, the flow 

is not uniform along the path of each laser.  Figure 11 shows the schematic of the entire 

setup.   
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Figure 11. Schematic of optical arrangement for flat-flame burner and isolator 

experiments 
 
Note that the burner experiment used only one of the tunable diode laser arrays and only 

seven beam paths.  A National Instruments (NI) PXI-8105 computer ran the experimental 

setup for the flat flame burner and isolator.  It sent a control signal to three NI PXI-5402 

14-bit, 100 MS/s function generators to provide the current modulation signal to an ILX 

driver.  The ILX driver provided thermo-electric cooling and current to the three lasers.  
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The three lasers, operating at nominal wavelengths of 1391 nm, 1392 nm, and 1397 nm, 

were combined into a single fiber by a 4×1 Newport combiner.  The combined signal 

then continued to a 1×2 Newport splitter which sent 10% of the signal to a 50/50 1×2 

Newport splitter and the remaining 90% of the signal to another 50/50 splitter.  The 50/50 

splitter receiving 10% of the signal directed one signal to a SiO2 etalon for a wavelength 

measurement while the other was used as a reference beam.  The 50/50 splitter receiving 

90% of the signal sent each signal to a separate 1×8 splitter.  The two 1×8 splitters 

provided up to 16 beam paths, each containing three wavelength ranges for a total of 48 

water absorption spectra.  The fibers were coupled to collimators which direct collimated, 

1 mm diameter beams through the flame to be recorded on the other side by an in-house 

designed InGaAs detector array complete with individual preamplifiers.  An overhead 

image of the laser array and detector setup for the flat flame burner experiment is shown 

in Figure 12.[23]  The recorded analog spectra are sent from the board to a NI 

analog/digital converter before they are sent back to the NI PXI-8105 computer to be 

recorded into memory.[3]  The entire setup enables near real-time data capture and 

tomography. 
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Figure 12. Overhead view of flat flame burner experiment with lines of sight overlaid 
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Selection of Observed Transitions 
 

Three lasers were used for the flat flame burner experiment.  Rough tuning for 

each of the three lasers was performed using a thermal electric cooler to obtain nominal 

wavelengths of 1391, 1392, and 1397 nm.  This allowed different wavelength ranges, and 

therefore different transitions of the water molecule, to be observed by each laser.  Table 

1 and the corresponding graphs in Figure 13 show the identified water transitions in the 

wavelength regions used. 
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Table 1. The 12 transitions used for experiment are shown in order of increasing 
wavelength 

λ (nm) ν0 (cm-1) 
S at 300 K (cm-1-

molecule-1-cm-2)×10-23 E0 (cm-1) v' J' Ka' Kc' J' Ka" Kc" 
 

Label 
1391.67 7185.60 83.35 1045.06 1 0 1 6  6  0 6  6  1 a
1391.71 7185.40 1.131 1474.98 1 0 1 9  5  4 9  5  5 b
1392.53 7181.16 1488 136.76 1 0 1 2  0  2 3  0  3 c
1392.55 7181.10 7.273 1216.20 1 2 0 7  7  0 7  6  1 d
1392.64 7180.61 3.277 1477.30 1 0 1 9  5  5 9  5  4 e
1392.68 7180.40 55.77 224.84 2 0 0 3  2  1 4  1  4 f
1392.81 7179.75 24.38 1216.20 1 0 1 7  6  2 7  6  1 g
1396.37 7161.41 1168 224.84 1 0 1 3  1  3 4  1  4 h
1396.42 7161.19 .7382 1446.13 0 2 1 11  3  9 10  3  8 i
1396.49 7160.81 .5983 1874.97 1 0 1 10  6  4 10  6  5 j
1396.60 7160.24 421.2 222.05 1 0 1 3  0  3 4  0  4 k
1396.61 7160.19 121.9 173.37 2 0 0 3  0  3 3  1  2 l

 
 

 
Figure 13. Spectra measured by three lasers: 1391 nm, 1392 nm, and 1397 nm with labels 

corresponding to Table 1 
 
The selection of these wavelength ranges was based on the specific peaks captured by 

each laser.  Peaks were chosen first based on their intensity, where higher intensity allows 

them to be integrated more accurately.  Second, peaks were chosen to have a range of 

term energies.  This was important to temperature determination because the x-axis of the 

Boltzmann plots is term energy.  Thus, to provide confidence in the linear fit to the 

Boltzmann plots, a range of initial state energies was required.   

 Igor Pro was used to perform integrations of all 12 transitions.[7]  The fitting 

routine implements the Humlíček algorithm to obtain a constrained, multi-peak fit.[24]  

This method provided six data points for the Boltzmann plots resulting in high accuracy 

temperature calculations.  These results are shown in the section covering the two-zone 
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analytic model.  Integrating each spectrum individually becomes time consuming when 

many beam paths are considered.  For the number of beam paths necessary to allow 

accurate tomography, an automated integration routine was developed in Igor.  The three 

peaks with the strongest transitions, and therefore the lowest error for the automated 

integration, were the 225 cm-1, the 1045 cm-1, and the 1216 cm-1 transition.  These peaks 

were used for the tomography results shown later in this chapter.  Using fewer peaks 

results in a less accurate temperature profile, however, so the development of a more 

rigorous data analysis routine that could fit more peaks automatically would increase the 

accuracy of the temperature and density results. 

From Raw Data to Integrated Absorption 
 

The light intensity observed at the detector is converted into an absorption 

spectrum, using Equation (22), by taking the natural logarithm of the detected beam 

divided by the reference beam.  Figure 14 shows one millisecond of raw data and the 

corresponding absorption spectra for each laser. 

 
Figure 14. A single period of the raw data from the three multiplexed lasers with the 

corresponding absorption spectra 
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A multi-peak, baseline Voigt fit was performed using Igor to fit the spectra.  The 

coefficients of the fit were then used to determine the areas of each peak in the spectrum.  

The results are the frequency integrated peaks, in units of wavenumbers, which are equal 

to the right hand side of Equation (22).  The DAQ software developed to run the flat 

flame experiments can perform integrations over all of the beam paths, seven for the flat 

flame burner, of a single selected peak in near real-time.   The seven lines of sight are 

shown below with the burner in the center position.  

 
Figure 15. Schematic showing the seven lines of sight used for the flat flame burner 

experiment 
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The resulting plots in Figure 16 show the frequency integrated absorption for the 1216 

cm-1 transition for the seven paths of the flat flame burner experiment with the burner in 

three positions.  As the burner is moved left and right, the profile changes, allowing flame 

position tracking to within millimeter precision.  With only seven beam paths, the 
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information necessary to determine positions and diameter to within millimeters is 

available.  Similar plots will be shown later for the isolator results in Chapter VI. 

 
Figure 16. Integrated absorption of the 1216 cm-1 transition for each of the seven lines of 
sight with the flame 9 mm left of center, in the center position, and 9 mm right of center 
 
 Two major point of interest are apparent in the graphs in Figure 16: flame position 

and line of sight path length.  First, the 1216 cm-1 transition has a smaller initial state 

population outside of the flames.  This is shown in the center graph where both lines of 

sight, zero and six, are completely outside of the flame.  As the flame is shifted left or 

right, the lines of sight show increased frequency integrated absorption ( lα~ ) in units of 

cm-1 when the flame moves into their respective paths.  Differences in path length can 

also be extracted from these graphs.  Using the center position, in the middle graph in 

Figure 16 and in the schematic of Figure 15, paths one through five are shown to pass 

through approximately the same length of hot gas, so the contribution to the intensity 

from the flame is about the same.  Paths one, three, and five, however, show higher 

intensities than paths two and four.  This is due to the longer cold path length of paths 

one, three, and five.  Even though the contribution to the intensity for the 1216 cm-1 

transition from the cold region is not as great as the contribution from the flame region, 

the extended path lengths of paths one, three, and five provide enough added absorption 

that the intensity is noticeably increased.  The information available in the graphs of 
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Figure 16, for all three transitions, enables accurate determination of the temperature both 

inside and outside of the flame, as shown in the next section. 

Analytic Two-Zone Model 
 

Before any peaks are integrated, information can be extracted about the burner 

using a two-zone analytic model by breaking spectra into their constituent hot and cold 

contributions.  Using the assumption that the burner experiment consists of a hot circular 

region surrounded by room temperature air, a geometric model describing the system can 

be applied.  First, consider a beam passing through a region of room temperature gas 

followed by a region of hot gas before hitting the detector as shown below in Figure 17. 

S’(T1)NT1 S’(T2)NT2 DetectorSource 

I2 I1 I0 

l1 l2  
Figure 17. Diagram showing absorption of light through a cold and hot region of gas 

 
The intensity of the incident light after passing through the two regions of gas is 

governed by Beer's law: 
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Now, considering the left hand side of Equation (38) as the total spectrum over the entire 

path, ln(I0/I2) can be labeled as AT.  The two terms on the right hand side of Equation (38) 

are the contribution to the spectrum from the cold region and the hot region respectively, 

so S' (T1)NT1l1g1(υ) can be labeled as AC, and S' (T2)NT2l2g2(υ) can be labeled as AH.  

Dividing AC by the cold path length, l1, and AH by the hot path length, l2, then gives the 

cold and hot spectra per unit length.  Using the beam geometry shown in Figure 18, the 

outside beam paths can be averaged and divided by the path length to give AC/l1.  To find 

AH/l2, however, the diameter must first be determined.  Once these spectra per unit length 

are determined, they can then be used as reference spectra and multiplied by the lengths 

of the hot and cold spectra of any beam path to reconstruct the total spectrum as: 

       
D
dA

L
dLAA H

C
CT +

−
=

)( ,    (39) 

where LC is the path length of the cold reference spectra, previously called l1, D is the 

diameter of the flame, L is the path length of the line of sight under investigation, and d is 

the path length of the line of sight through the flame, previously called l2.  The change of 

variables allows the diameter to be calculated using a cold reference path, with no hot 

contribution, and two paths with different lengths of hot contribution.[14, 17]  The setup 

described here is shown in Figure 18. 
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Line of Sight: 1  2  3  4  5  6  7 Detector 
Array 

 
Figure 18. Diagram of burner with line of sight overlay 

 
The diameter is determined by solving for AH of two paths with different path 

lengths through the flame, d, and setting them equal to each other.  The result after some 

algebra is: 

        
LAA
LAA

d
d

CT

CT

−
−

=
''' .    (40) 

Rearranging Equation (40) enables the solver in Microsoft Excel to determine the ratio of 

d'/d which minimizes the following equation: 

       ( ) ( ) 0''' =−−− LAA
d
dLAA CTCT .   (41) 

The diameter can then be determined using geometry, where 
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Once D is known, the cold contribution to the center path length can be subtracted 

off, leaving a reference hot spectrum, AH.  With the reference spectra AC and AH and their 

corresponding lengths LC and D determined, all of the lines of sight can be split into their 

hot and cold spectrum contributions.  This allows for more accurate integration of the 

absorption spectra which enables very accurate path length, and temperature 

determination. 

Because the initial level populations for each transition are dependent on 

temperature, they give different diameters of the flame.  For example, due to its lower 

term energy, the initial state of the 1045 cm-1 transition (in the 1391 nm spectrum) begins 

to fill thermally before the initial state of the 1216 cm-1 transition (in the 1392 spectrum).  

Thus, as the line of sight moves closer to the edge of the burner and temperature 

increases, the frequency integrated absorption coefficient for the 1045 cm-1 transition 

becomes larger before the frequency integrated absorption coefficient for the 1216 cm-1 

transition. The result is a larger diameter determination when using the 1045 cm-1 

transition.  The diameter results for each spectrum are shown in Table 2.   

Table 2. Results of diameter determination using two-zone analytical method 
TDL Center Wavelength (nm): 1391 1392 1397 

Corresponding Transition (cm-1): 1045  1216 224 
Diameter (mm): 66.9 62.0 56.9 

 
With separate hot and cold spectra, the integrations of the various lines can be 

performed very accurately.  Using the separated hot and cold spectra, where the diameter 

of the flame was determined with the 1397 nm spectrum, Boltzmann plots were created 

for the hot and cold region, as shown in Figure 19. 
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Figure 19. Separated spectra and Boltzmann plots resulting from peak integrations 

1391 nm 1392 nm 1397 nm 

 
The resultant temperatures and calculated mole fractions compare extremely well 

with the thermocouple measurements as shown in Table 3.  In the table, the 40 and 58 

mm averages refer to the length across the flame used to calculate an average 

temperature.  For example, the 40 mm average uses the center 40 mm of the temperature 

profile shown in Figure 10, from approximately 14 mm to 54 mm.  Note the mole 

fraction for the 40 mm average of the hot region, 0.1547, comes from a model assuming 

complete combustion.[22]  This number was not available for the 58 mm average of the 

thermocouple data which includes some of the boundary layer. 

Table 3. TDLAS Temperature and mole fraction results and comparison to thermocouple 
measurements and calculated mole fractions. 

Measurement Temperature (K) Mole Fraction
TDLAS Hot 1628 ± 20 0.157+0.008 

TC Hot (58 mm average) 1583 ± 124 N/A 
TC Hot (40 mm average) 1638 ± 10 0.1547 

TDLAS Cold 300 ± 1 0.0071+0.0004 
TC Cold (at 15 mm from flame) 302 ± 2 0.0061+0.0004 
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The results from the section are obtained using a completely analytical approach 

to perform tomography.  In a flow where conditions are changing, like that of a scramjet, 

many more datasets would need to be acquired, resulting in more data and necessitating a 

computational approach to perform tomography.  This same two-zone model can still be 

used in a computational approach, as shown in the next section. 

Computational Tomography 
 

Tomography for the flat flame burner was performed using two models for basis 

set generation.  The first method uses the same basis set as the analytical two-zone model 

where a radially symmetric hot center region is surrounded by cooler, room-temperature 

gas.  It uses beam paths outside of the flame to define the cold region, and then performs 

a fit to capture the flame region.   The second model uses a radial temperature and density 

profile from CFD.  This model provides contour information in the boundary region, 

which the two-zone method cannot capture. 

Two-zone Model 
 

The two-zone model is a very basic example of the use of a basis created from a 

priori knowledge to reduce the number of lines of sight necessary to perform 

tomography.  It uses the same symmetry arguments as the two-zone analytic model and 

therefore provides an excellent comparison.  The three transitions with the smallest 

integration error were used for the tomography portion of the experiment: the 225 cm-1, 

1045 cm-1, and 1216 cm-1 transition.  For each transition, an absorption coefficient map 

was calculated by first constraining the cold region using only the beam paths outside of 

the flame, then fitting the hot region separately.  See the Tophatfixedcold program in 
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Appendix C for the actual code.  To fit the data to the hot region, the projection matrix 

for the beams in the cold region was used to determine the amount of integrated 

absorption that contributed to each line of sight due to the cold region.  These path 

integrals were then subtracted from the integrated absorption given by the detectors.  The 

remaining absorption was then due completely to the hot region which was fit 

independently.  The independent hot region fit was done by making an absorption map 

where the hot region was set to one and the cold region was set to zero as shown in 

Figure 20.  The adjusted data were fit to the hot basis map by scaling it with a coefficient.  

The fitted integrated absorption map was the result of the fixed cold basis map added to 

the scaled hot basis map. 

+ CH                                 =
0 1

Cold Basis          Hot Basis           Fitted

0 αC/LαC/L

αH/D

~ ~

~

+ CH                                 =
0 1

Cold Basis          Hot Basis           Fitted

0 αC/LαC/L

αH/D

~ ~

~

 
Figure 20. Basis images and resultant fit absorption map 

 
The automation of the fitting process lends itself to an optimization where the 

flame diameter and the center location of the basis set are varied.  The residual of the fit, 

as these parameters are varied, shows how well the basis model matches the data 

collected at the detectors using the following equation:[3, 16]   

    ,   (43) ]*~[
#

1
∑
=

−=
LOS

i
iii pCLabsResidual α

where iα
~  is the frequency integrated absorption coefficient from the ith beam path, Li is 

the length of the ith  beam path, C is the fit coefficient of the basis image, and pi is the line 
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integral along ith beam path in the basis image.  Using this logic, the minimum values of 

the residual maps were used to determine where the best fit occurred.  The diameter 

determined using the optimization technique matches up well to the measured flame 

diameter, as well as the diameter given by the two-zone analytic model. 
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m

-1
)

-
(c

m
-1

)
-

 
Figure 21. Two-zone optimization showing residual as a function of x position of the 

center of the burner and the flame diameter are varied 
 

The plot in Figure 21 used 63 lines of sight, so both diameter and x position are 

well defined resulting in a large curvature at the minimum.  Table 4 shows the measured 

diameter of the porous surface of the flat flame burner as well as the analytic two-zone 

model solution for the diameter using each of the three transitions.  Table 5 shows the 

results of all of the different combinations of transitions and number of beams used.  All 

of the residual based center x position results agree with the measured center of 10 cm to 

within 0.3 cm.  The diameter results agree with the physical diameter of the burner to 

within 0.5 cm.  Also note the correlation between the analytic method diameters and the 
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tomography residual diameters for each transition.  Due to their sensitivities at different 

temperatures, each of the transitions begins to pick up the boundary layer at different 

points.  Both methods show the 225 cm-1 transition obtaining the smallest diameter of 5.7 

± 0.2 cm.  The next largest diameter determination comes from the 1216 cm-1 transition, 

with both methods giving 6.1 ± 0.3 cm.  The 1045 cm-1 transition gave the largest 

diameter of 6.4 ± 0.2 cm. 

Table 4. Measured and calculated flame diameters from physical apparatus and two-zone 
analytic model 

Transition (cm-1): 225 1045 1216
Physical Diameter of burner (cm): 6.0 

Analytic Diameter (cm): 5.7 6.7 6.2 
 
 
Table 5. Results of two-zone optimization of the x position of the center of the burner and 

the diameter of the flame 
Transition (cm-1) Beams Used X Position (cm) Diameter (cm) 

225 
7 
63 
119 

10.3 
10.2 
10.2 

5.8 
5.5 
5.5 

1045 
7 
63 
119 

10.0 
10.0 
10.0 

6.5 
6.5 
6.5 

1216 
7 
63 
119 

10.1 
10.1 
10.1 

5.8 
6.3 
6.3 

 
Due to the large number of beam paths crossing the x direction, as shown in 

Figure 18, there is enough information to provide a good estimate of the center position.  

In the y direction, however, information is provided only by the diagonal beam paths.  

The surface plot of the two-zone residual map as both the x and y center positions are 

varied as shown in Figure 22. 
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Figure 22. Two-zone optimization of the x and y position of the center of the burner 

using tomography 
 

While the curvature at the minimum of the residual map in the y direction is not 

as large as the x direction, a clear minimum is still discerned.  Table 6 shows the results 

of each of the transitions with three different numbers of path lengths.  Even with the 

limited information in the y direction, the center y position is located to within 1 cm of 

the measured position of 16.7 cm. 

Table 6. Results of tomography optimization to find the center position of the flame 
Transition (cm-1) Beams Used X Position (cm) Y Position (cm) 

Measured - 10.0 16.7 

225 
7 
63 
119 

10.4 
10.2 
10.2 

17.1 
16.3 
16.4 

1045 
7 
63 
119 

10.0 
10.1 
10.0 

16.7 
17.4 
17.3 

1216 
7 
63 
119 

10.1 
10.1 
10.1 

16.4 
17.3 
17.1 
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Once a fitted integrated absorption map was completed for each of the three 

transitions, a Boltzmann plot was then constructed pixel by pixel.  From the temperature 

plot, a water density was calculated. The temperature and density surface plots using the 

optimized diameter from the 1216 cm-1 line of 6.3 cm are shown here in Figure 23.  A 

comparison to the thermocouple results and CFD tomography results is shown at the end 

of the next section. 

 
Figure 23. Temperature and density maps using tomography with the two-zone model 

basis images 
 

CFD Model 
 

The CFD calculations provide the temperature and density as a function of 

distance from the center of the flame at varying heights above the burner surface.  Radial 

symmetry was assumed to create temperature and density maps.  The radius was scaled 

using an optimization technique similar to that used in the two-zone model.  See the 

program Bestratio in Appendix C for the actual algorithm.  The radial plots of the CFD 

calculations are shown in Figure 24.  Again, note the difference in sensitivity of the three 

transitions to the boundary layer.  These differences result in the different diameter 
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determinations of both the two-zone analytical model as well as the two-zone 

optimization.   

 
Figure 24. Radial temperature and density from CFD calculations and the resulting radial 

absorptions for the three transitions used for tomography 
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 The results of the radius optimization are shown in Figure 25.  A fit residual was 

calculated for each of the three transitions over a range of scaled radii of the CFD from 

0.75 to 1.25 in increments of 0.01.  The range over which a good fit to the basis functions 

can be obtained is different for each transition.  Also, the residuals are fairly flat for a 

range of values in which a good fit can be achieved by scaling the diameter and 

temperature of the flame.  Essentially, a basis image with a smaller flame diameter can 

still maintain the same line integral to fit the data as long as the temperature of the flame 

is increased at the same time.  However, once the diameter becomes so large that it 

pushes into the path of a line of sight that is showing no flame contribution, the residual 

rises dramatically.  Conversely, if the diameter becomes so small that a line of sight 

which does show flame contribution is left outside of the flame, the residual quickly 

increases again.   To overcome these difficulties, a weighted average of the best fit radius 

was performed by adding the inverse of the three individual residual plots.  This method 

weights the residual plots with the lowest residual, and therefore best fit, the highest.  The 

result is shown by the black line trace in Figure 25.  The maximum of the weighted sum 

of the inverse residuals is achieved at a value of 0.9.  This indicated that the x-axis of the 

radial temperature and density profiles given by the CFD calculations needed to be scaled 

by a factor of 0.9 to fit the TDLAS data. 
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Figure 25. Residuals and combined weighted inverse of residuals showing the 

optimization of the radius of the CFD training set 
 
The training set was constructed using the CFD calculations over a range of 

heights from 3 mm to 9 mm above the surface of the burner.  Each of the heights was 

then scaled to a maximum temperature and a peak density to minimum density ratio.  The 

resulting training set consisted of 175 integrated absorption maps which capture a wide 

range of possible conditions of the burner.  Using all 175 snapshots to fit the data for each 

line, however, would make the fit underdetermined unless more lines of sight were 

added.  To achieve a well-posed problem, principal component analysis was used to 

reduce the dimensionality of the training set and thereby reduce the number of lines of 

sight necessary. 

The first step of the PCA algorithm fit the data to the mean of the training set.  

Then, the projection matrix from the mean image was subtracted from the data like the 
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two-zone model where the fixed cold contribution was subtracted from the data.  The 

remaining integrated absorption coefficient for each path was fit to a linear combination 

of a justified number of the first principal components.   

The justification for the number of principal components used was provided by 

the representation error and the condition number.  The representation error is a 

percentage error that describes how well, on average, each image in the training set can 

be constructed as a function of the number of principal components kept to do the 

reconstruction.  See Reperr2 in Appendix C for the algorithm.  For complex distributions, 

keeping more images in the basis set allows better representation of every image in the 

training set.  The condition number can be thought of as an error multiplier.  The error in 

the measured data will be greater in the fit coefficients by a factor of approximately the 

condition number.  Condition numbers around 10 or less were used to define a well posed 

mathematical problem for this experiment.   

Table 7. Condition number under varying conditions 
 E0 (cm-1) 7 Beampaths 63 Beampaths 119 Beampaths 

3 BASIS 
VECTORS 

225 
1045 
1216 

148 
528 
324 

100 
26 
13 

40 
10 
7 

2 BASIS 
VECTORS 

225 
1045 
1216 

31 
9 
4 

16 
4 
4 

12 
4 
5 

1 BASIS 
VECTOR 

225 
1045 
1216 

1 
1 
1 

1 
1 
1 

1 
1 
1 

 
Table 8. Average representation percent error for the three transitions using varying 

numbers of principal components 
 225 cm-1 1045 cm-1 1216 cm-1 
3 BASIS VECTORS .03 % .13 % .20 % 
2 BASIS VECTORS .18 % .25 % .34 % 

1 BASIS VECTORS .46 % 8.34 % 17.20 % 
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As shown in Table 7, using more lines of sight lowers the condition number 

because additional information is available to constrain the fit.  Table 8 shows that the 

representation error is under one percent when two principal components are retained.  

Using the information of Table 7 and Table 8 together, keeping two principal components 

with 119 beam paths was chosen as the optimum solution.  Figure 26 shows the mean and 

first two principal components for the 1216 cm-1 transition.  The linear combination of 

these three images results in the fit absorption map. 

 

Figure 26.a. The mean image of the training set for the 1216 cm-1 transition 
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Figure 26.b. The first principal component for the 1216 cm-1 transition 
 

 

Figure 26.c. The second principal component for the 1216 cm-1 transition 
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Figure 26.d. Fit absorption map for the 1216 cm-1 transition 

  
Figure 26. Fit coefficients for the mean image and first two principal components are 

multiplied by their corresponding basis image then added in linear combination to 
produce the fitted frequency integrated absorption coefficient map 

 
Like the two-zone model, temperatures were calculated pixel by pixel using the 

three fitted integrated absorption maps while density was calculated from the temperature 

map using Equation (18).  Figure 27 shows the absorption maps using 119 beam paths 

and two principal components for the three transitions under investigation.  Again, the 

different temperature sensitivities are readily apparent in the absorption maps.  Due to the 

low ground state energy of the 225 cm-1 transition, the population of the initial state 

decreases in the flame due to thermal excitation.  This causes the absorption to decrease 

in the flame resulting in an absorption map with a “bowl” in the center.  The thermal 

excitation from the flame increases the initial state populations of the 1045 cm-1 and 1216 

cm-1 transitions resulting in top-hat shaped absorption maps shown here. 
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Figure 27.a. Fit absorption map for the 225 cm-1 transition 
 

 

 

Figure 27.b. Fit absorption map for the 1045 cm-1 transition 
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Figure 27.c. Fit absorption map for the 1216 cm-1 transition 
 

Figure 27. Example frequency integrated absorption coefficient maps for each of the 
three transitions of interest 

 
Combining the information from the three absorption maps using a Boltzmann 

plot at each pixel results in the temperature map shown in Figure 28.  Again, solving 

Equation (22) for NT results in the water density map shown in Figure 28.  Using the 

scaled CFD images as a basis for the lines of sight allows accurate profile determination 

for the flat flame burner. 
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Figure 28. Composite temperature and density contour plots for the flat flame burner 

using the first two principal components and 119 beam paths 
 

Taking a slice from the two-zone and CFD temperature and density plots allows a 

comparison to the thermocouple data of the flat flame burner.  Figure 29 shows this 

comparison.  Constraining the cold region in the two-zone model to agree with one of the 
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lines of sight that did not pass through the flame resulted in a better temperature and 

density determination in the hot region.  Both the CFD and the two-zone model, however, 

give very good agreement on mole fraction in the flame.  The fit compensated for the 

high temperature determination of the CFD model in the center by lowering the density.  

Once more transitions are added to the automated integration routine, the Boltzmann 

plots should become more accurate.  This should result in better temperature agreement 

with both the two-zone model and the thermocouple measurements.  Also, because the 

mole fraction in the hot region agrees with the mole fraction from the complete 

combustion model used in the thermocouple experiment, calculated densities should 

show agreement as well. 
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Figure 29. Comparison of CFD results to two-zone results and thermocouple 

measurements 
 

The strategy developed in this chapter was able to obtain accurate temperature 

and density measurements for the flat flame burner.  The next step is to see how valuable 

the strategy is when applied to a more complicated flow.  In Chapter VI, the same 

strategy and experimental setup used for the flat flame burner is employed to investigate 

the flow provided by the supersonic wind tunnel in Research Cell 18. 
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V Isolator Experiment 

Introduction 
 

This chapter serves as an introduction to the isolator experiment performed in 

Research Cell 18.  The motivation for the flat flame burner experiment was to provide 

confidence in the ability of TDLAS based tomography.  Its performance lends credibility 

to the strategy developed and its implementation in more complicated flows like that of 

the isolator.  Paralleling the flat flame burner experiment, a priori information was 

provided by CFD calculations to reduce the number of beam paths necessary to perform 

tomography.  However, the CFD calculations did not agree with the TDLAS data on the 

location of the first reflection in the shock train.   This inconsistency made it impossible 

to perform tomography without first adjusting the CFD calculations.  Thus, an 

optimization, like that of the flat flame burner diameter and center location, was 

performed on the isolator CFD calculations to provide a better match to the TDLAS data.  

 With 16 lines of sight, TDLAS was able to obtain important information about in-

flow static pressure, temperature, and density before any tomography was performed.  

Vector quantization allowed similar conditions to be averaged to provide insight into the 

shock structure.  This information enabled comparison with the CFD and a similar 

parameterization and optimization of the CFD basis images paralleling the two-zone 

techniques used to find diameter and center position of the flat flame burner.[16]   

Isolator Experimental Setup 
 

An identical data collection and laser control system to the system shown in 

Figure 11 was used to make measurements in Research Cell 18.  However, the 
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collimators and detectors for the laser beams were configured in metal boxes purged with 

nitrogen.  This eliminated the water in the path up to the isolator window and allowed 

measurements to be made only in the region of interest.  The isolator provided optical 

access to the vitiated, supersonic flow through small, approximately 1.5 by 3.5 inch, 

windows on each side.  Methane was used to vitiate the flow, providing a controlled 

amount of water to observe using TDLAS.  The backpressure of the flow was controlled 

by a valve downstream of the isolator.  Adjusting the backpressure varied the position of 

the shock in the isolator which was then observed by the laser array.  A diagram of the 

wind tunnel is shown in Figure 30.  Note that the combustor in this image was replaced 

with a ball valve to provide the backpressure resulting in a controlled shock train.   

VITIATOR ISOLATOR EXHAUST

COMBUSTOR
THRUST STAND

FACILITY NOZZLE

AIR SUPPLY

VITIATOR ISOLATOR EXHAUST

COMBUSTOR
THRUST STAND

FACILITY NOZZLE

AIR SUPPLY

 
Figure 30. Schematic of the wind tunnel in RC 18 at Wright Patterson Air Force Base, 

adapted from reference[23] 
 
Closing the valve increases the backpressure which pushes the shock train into and 

through the isolator where the laser array was able to make absorption measurements.  

The following plots show the CFD model of the entire isolator as the backpressure is 

increased. 
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Figure 31. CFD model of shock in the isolator as backpressure is increased[3] 

The image in Figure 32 shows the setup of the diode laser array.  Note that this is a very 

similar setup to that used in the flat flame burner experiment, except the burner 

experiment used only one laser array and one photo-diode detector array.  For the isolator 

experiment, eight beams were used on each side giving a total of 16 lines of sight.  Two 

of the beams were aimed diagonally across the flow to give Doppler information and, like 

the angled beams in the flat flame experiment, to give tomographic information in the 

direction perpendicular to the flow. 
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Figure 32. Image of experimental setup of laser diode and photo diode detector arrays for 

the isolator experiment[16] 
 

Comparison to CFD 
 

By integrating every spectrum at the data collection rate of 1000 Hz, instead of 

averaging over the entire collection like in the flat flame burner experiment, oscillations 

in the shock were observed.  The left side of Figure 33 shows a waterfall plot of the 

absorption for the 14 straight lines of sight as time progressed at a constant backpressure 

provided by the ball valve.  The vector quantization algorithm, originally intended to aid 

in training set dimensionality reduction, was used here to find similarly shaped plots of 
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the absorption across the window.  By taking the average of these similar plots, the shock 

front and first reflection, which are the first and second pressure peaks in the shock train, 

were resolved as shown in the two plots on the right of Figure 33.[16]   

 
Figure 33. Waterfall plot and vector quantized averages showing shock structure in the 

isolator 
 
Converting the plots in Figure 33 to pressure and temperature allows a comparison with 

the CFD model.  The plots in Figure 34 show that the CFD is missing the first reflection 

in the shock train.  Using the data from only 14 lines of sight perpendicular to the flow, 

this discrepancy in the CFD is readily apparent.  Even without tomography, enough 

contour information is available from the TDLAS to make a comparison with the CFD 

calculations.   

 Performing tomography with a limited number of beam paths relies on contour 

information obtained from the CFD calculations.  The discrepancy between the CFD and 
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line of sight temperatures and pressures shown in Figure 34 shows that the current CFD 

calculations will not provide an adequate basis function to fit the data.  Tomography was, 

therefore, not possible using the given CFD. 

 
Figure 34. Averaged absorption plots converted to temperature and pressure 

 

Optimization of CFD 
 

By parameterizing the flow in terms of wall thickness and shock location, an 

optimization of the CFD was performed to correct for the missing first reflection.  Similar 

to the scaling of the diameter of the CFD for the flat flame burner, the position of the first 

reflection was scaled in the isolator CFD to provide a better fit to the data as shown in 

Figure 35.[16]  
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Figure 35. Results of parameterization and optimization of CFD images to TDLAS data 
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The top two images show the top down view of the original CFD temperature and 

pressure maps for the isolator.  These are the two-dimensional representations of the plots 

in Figure 34.  Again, the first reflection is missing in both the temperature and pressure 

maps.  After the optimization, the lowest residual was achieved by reducing thickness of 

the shock and moving the position of the first reflection up into the window.  Enough 

information was available from the 16 lines of sight to enable a modification of the CFD 

to better fit the data.  Before this experiment, CFD calculations of this sort did not have 

any in-flow data with which to compare.  With feedback from both sides, new CFD 

calculations can be made, enabling better tomography which can again refine the CFD.  

Further implementation of the strategy presented in this thesis will put the 

characterization of complicated flows with limited optical access in reach. 
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VI Conclusions and Recommendations 
 

The primary objective of this thesis was to provide validation of the developed 

strategy to perform tomography using a limited number of TDLAS beam paths.  By 

thoroughly characterizing the flat flame burner through the traditional methods of 

thermocouples, pressure probes, and humidity probes, a good point of comparison was 

obtained.  Using fairly basic geometry, the two-zone analytic method for determining 

temperature of the hot and cool region showed very good agreement with the 

thermocouple data.  Applying this same model to perform tomography with varying 

numbers of beam paths demonstrated not only good agreement with both the two-zone 

analytic method and thermocouple method, but that good agreements can be achieved 

with very limited optical access.  Finally, performing tomography with the CFD model 

allowed excellent determination of the contour of the burner profile as well as the mole 

fraction of water in the flame.  By stepping through each level of tomography, this thesis 

shows that tomography of a flow with limited optical access is possible using TDLAS.  It 

provides a proof of concept for the more geometrically challenging isolator experiment.   

The utility of both the VQ and PCA algorithms was tested for tomography.  VQ 

proved to be helpful in the near real-time application of tomography in the isolator.  It 

worked very well as a method to optimize parameters in both the two-zone model and the 

CFD model.  It was also useful in selecting similarly shaped shock structures in the time 

resolved shock oscillations of the isolator flow.  PCA was able to reduce the CFD 

training sets used for the flat flame burner from 175 to just 3 images, which drastically 

reduced the number of beam paths necessary to perform tomography.   
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This thesis also demonstrated the technology necessary to perform the TDLAS 

measurements.  Using a relatively inexpensive system, up to 16 beam paths were sampled 

over three spectral regions at sweep rates greater than 1 kHz resulting in 48 spectra per 

sweep.  This high data rate allowed near real-time reconstruction of the flow in both the 

flat flame burner as well as the isolator.   

The flat flame burner results lay the groundwork for understanding the effects of 

temperature changes on TDLAS based tomography.  The method developed for obtaining 

tomographic maps of temperature and density has been carried over to the isolator 

experiment, where the effects of shock train structure on TDLAS based mass-flux sensors 

were studied.  The results of the isolator experiment, introduced in Chapter 5, show that 

this approach can be carried over to other parts of the supersonic combustion flow path 

that involve complex flow distributions, such as the exhaust plane of supersonic 

combustors.[16] 

Recommendations for future work are manifold.  In the short term, a more 

rigorous method of automating the integration of absorption spectra is necessary.  

Providing more points for the Boltzmann plots should increase the accuracy of the 

temperature determination because now, only three points are used to perform the linear 

fit.  Error in just one point can cause a significant difference in the temperature 

determination.  With more points, the error will be reduced.  Also, the current method for 

determining absorption coefficient maps fits each transition independently.  Performing 

the fit with all of the transitions at once will help to constrain the fit and provide a more 

accurate result.  A new flat flame burner with four independent quadrants is currently 

being set up.  Performing the same analysis on this more complicated flow would help to 
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perfect the method and provide further proof of concept.  Future work could also include 

helping to refine the CFD model by iterating on the testing of the CFD and repeating it to 

get a better fit. 

Scheduled future work also includes flight testing of a TDLAS system on board a 

SCRAM Jet engine.  This will provide a great deal of insight into how well TDLAS can 

perform in the harsh environments encountered by a supersonic vehicle.  TDLAS has the 

potential to revolutionize the field of engine diagnostics, particularly in flight vehicles 

where weight and size are of critical importance. 
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Appendix A. Beer’s Law to Frequency Integrated Absorption Coefficient  

Adapted from Bernath pp 272-274.[8] 

Beer’s Law: 
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Where l⋅α~  has units of cm-1 if v is in wavenumbers. 
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Appendix B. CFD to Frequency Integrated Absorption Coefficient Map 

For the flat flame burner, the CFD calculations give temperature in K, mass fraction of 

H2O, and the total density of the burning gas in kg/m3 all as a function of radial position.  

First, the total gas density, Dtot, and the mass fraction of water, FH20, are used to calculate 

the density of water in the flame in molecules/cm3, NT: 
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where  has units of cm/molecule and NT has units of molecules/cm3, giving )(' refTS α~  

units of cm-2.  The partition functions, q(Tref) and q(T) are calculated using the Matlab 

function called partition (found in Appendix C) written by Dr. Chad Lindstrom.  The line 

intensity, , in units of cm/molecule, the term energy, E0, and the transition energy, 

v10, in units of wavenumbers, are given by a HITRAN table. 

)(' refTS
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Appendix C. Matlab Programs 

The following programs were written by Dr. Chad Lindstrom and Ryan Givens to 

create basis functions for the flat flame burner experiment, fit the basis functions to the 

data, extract temperature and density, and analyze the results: 

Burnerbasisv2: 
function [A,B,x,y] = 
burnerbasis(C_list,density,temp,rratio,params,profilex,maxT) 
% [B,x,y] = 
% burnerbasisv2(C_list,density,temp,rratio,params,profilex,maxT) 
% function to create snapshots for a McKenna burner 
% 
% OUTPUT: 
% B = a PxQxM tensor of the M = 
% numelements(C_list)*numelements(D_list)snapshots   
% x = The x coordinates of the matrix 
% y = The y coordinates of the matrix  
%%  
% INPUT: 
% C_list = A Nx2 vector (x0 y0;xf yf;dx dy) that describes the range     
% that the center of the burner will be moved.  It is on a square grid 
% that goes from x0 to xf and y0 to yf in increments of dx and dy 
%  
% density = A NxM matrix consisting of a the mass fraction and density 
% of the various basis guesses in the form (MF1 D1 MF2 D2 ...) 
% 
% temp = A Nx(M/2) matrix of the radial temperature profiles 
% rratio = A list of ratios for the max water density in the flame to   
% the min water density in the flame 
% params = A 7x1 vector with (Lx,Ly,dx,dy,Egnd,Sref,nu) where Lx is the 
% length of the  region, Ly is the length of the region in the y-
% direction, dx is the distance between adjacent pixels, dy is the 
% distance between the adjacent pixels in the y-direction, Egnd is the 
% ground state energy, Sref is the line intensity at 296 K, and nu is 
% the wavenumber of the transition 
% maxT = A list of maximum temperatures (RT is set to 293 K = 20 deg C) 
% 
% Author: Chad Lindstrom 
  
Nx = floor((C_list(2,1)-C_list(1,1))/C_list(3,1)) 
Ny = floor((C_list(2,2)-C_list(1,2))/C_list(3,2)) 
NB = size(temp,2); % number of basis functions 
No = size(rratio,1); 
Nt = size(maxT,1); 
  
index2 = 1; 
for i=1:NB %calculate 1D absorption profiles for all cases 
    for j=1:No 
        for k=1:Nt 
        D = density(:,2*i-1).*density(:,2*i)*3.344e19;  
        maxD = D(1); 
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        minD = maxD/rratio(j); 
        D = scaleshift(maxD,minD,D); 
        T = scaleshift(maxT(k),292,temp(:,i)); 
        A(:,index2) = alpha(T,D,params(5),params(6),params(7)); 
        index2 = index2+1; 
        end 
    end 
end 
index2=index2-1; 
  
center = ones(2,1); 
center(1) = C_list(1,1); 
center(2) = C_list(1,2);       
[H,x,y] = burnerv2(center,A(:,1),profilex,params); 
L1 = size(H,1); 
L2 = size(H,2); 
B = ones(L1,L2,Nx*Ny*NB*No); 
index = 1; 
  
for i = 1:Nx 
    for j=1:Ny 
        for k=1:index2 
            center(1) = C_list(1,1)+(i-1)*C_list(3,1); 
            center(2) = C_list(1,2)+(j-1)*C_list(3,2); 
            [H,x,y] = burnerv2(center,A(:,k),profilex,params); 
            B(:,:,index) = H; 
            index = index+1; 
           nd  e
        end 
    end 
end 
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Alpha:  
function A = alpha(T,N,Egnd,Sref,nu) 
% function A = alpha(T,N,Egnd,Sref,nu) 
% is a function that calculates the integrated absorption coefficient 
% map given the temperature and density maps as well as the parameters 
% for the specific spectroscopic transisition 
% 
% Outputs: 
% 
%       A = the absorption map in cm^-1       
% 
% Inputs: 
%        
%       T = The temperature in Kelvin (may be a vector or matrix)   
%           the maximum temperature supported is 2990 K and the minimum 
%  is 200 K 
%       N = The number density of the molecules (cm^-3) must be the  
%  same size as T 
%       Egnd = The ground state energy in cm^-1 that is being probed 
%       Sref = The line intensity from Hitran at 296 K 
%       nu = wavenumber of exciting light (cm^-1) 
% Author: Chad Lindstrom 
  
Qref = partition(296,nu); 
Q = partition(T,nu); 
S = Sref*Qref*exp(-1.439839851*Egnd*(1./T-1/300))./Q; 
A = N.*S; 
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Partition: 
function Q = Partition(T,nu) 
%  
% function Q = Partition(T,nu) 
% is a function that calculates the partition function and accounts for 
% population in the excited state based on the Hitran parameters 
% 
% 
% Outputs: 
% 
%       Q = The value of the partition function at temperature T (if T 
%  is a vector or matrix Q will be the same size vector or 
%   matrix) 
% 
% Inputs: 
%        
%       T = The temperature in Kelvin (may be a vector or matrix)   
%           the maximum temperature supported is 2990 K and the minimum 
%   is 200 K 
% 
%       nu = wavenumber of exciting light (cm^-1) 
% 
% Author: Chad Lindstrom 
  
R1 = [-1.822185*10 4.230752*10^-1 7.703331*10^-4 6.185911*10^-9]; 
R2 = [-6.594415*10 6.945487*10^-1 2.468324*10^-4 3.484234*10^-7]; 
R3 = [-6.18536*10 6.973356*10^-1 2.183351*10^-4 3.699410*10^-7]; 
R4 = [1.993301*10^5 -4.280657*10^2 3.073247*10^-1 -7.289637*10^-5]; 
R5 = [-1.311914*10^3 3.214013 -1.522213*10^-3 7.885532*10^-7]; 
R6 = [-4.529464*10^3 7.314166 -3.265189*10^-3 1.035648*10^-6]; 
  
rows = size(T,1); 
columns = size(T,2); 
  
for i = 1:rows 
    for j = 1:columns 
     if (T(i,j)<=500) 
         Q(i,j) = R1(1)+R1(2)*T(i,j)+R1(3)*T(i,j)^2+R1(4)*T(i,j)^3; 
     elseif (T(i,j)<1000) 
        Q(i,j) = R2(1)+R2(2)*T(i,j)+R2(3)*T(i,j)^2+R2(4)*T(i,j)^3; 
     elseif (T(i,j)<1350) 
        Q(i,j) = R3(1)+R3(2)*T(i,j)+R3(3)*T(i,j)^2+R3(4)*T(i,j)^3; 
     elseif (T(i,j)<1425) 
        Q(i,j) = R4(1)+R4(2)*T(i,j)+R4(3)*T(i,j)^2+R4(4)*T(i,j)^3; 
     elseif (T(i,j)<2500) 
        Q(i,j) = R5(1) + R5(2)*T(i,j)+R5(3)*T(i,j)^2+R5(4)*T(i,j)^3; 
     else %if (T(i,j)<2990) 
        Q(i,j) = R6(1) + R6(2)*T(i,j)+R6(3)*T(i,j)^2+R6(4)*T(i,j)^3;    
     end 
     Q(i,j) = Q(i,j)/(1-exp(-4.1357*3*nu/(8.617*T(i,j)))); 
    end 
end 
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Scaleshift: 
function Pn = scaleshift(P0,Pmx,data) 
% function Pn = scaleshift(P0,Pmx,data) 
% is a function that will scale and shift an array for the burner 
% problem so that the temperatures or concentrations match measured 
% values at the center and edges of the profiles 
% 
% Outputs: 
% 
%       Pn = the new profile       
% 
% Inputs: 
%        
%       P0 = The profile value at the center of the burner 
%       Pmx = The profile value at the edge of the burner region 
%       data = The profile(s) (each column is taken to be a profile) 
% 
% Author: Chad Lindstrom 
  
columns = size(data,2); 
length = size(data,1); 
  
for i=1:columns 
    x0 = data(1,i); 
    xf = data(length,i); 
    m = (Pmx-P0)/(xf-x0); 
    b = P0-m*x0; 
    Pn = data(:,i)*m+b; 
end 
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burnerv2: 
function [burnerprofile,x,y] = f(center,profile,profilex,params) 
% [burnerprofile,x,y] = f(center,profile,profilex,params) function to 
% create snapshots for a McKenna burner 
% 
% OUTPUT: 
% burnerprofile = a profile that has an inner circle with magnitude 
% ratio and an outer rectangular region with a value of 1 
%  
% x = The x coordinates of the matrix 
% y = The y coordinates of the matrix  
%%  
% INPUT: 
% center = A 2x1 vector (x0 y0) that describes the center of the burner 
% profile = The 1D radial profile for the burner (assumes last point is 
% absorbence coefficient in ambient air) 
% profilex = The x coordinates for the burner profile 
% params = A 4x1 vector with (Lx,Ly,dx,dy) where Lx is the length of 
% the region, Ly is the length of the region in the y-direction, dx is 
% the distance between adjacent pixels, dy is the distance between the 
% adjacent pixels in the y-direction   
% 
% Author: Chad Lindstrom 
  
  
Nx = ceil(params(1)/params(3))+1;   
Ny = ceil(params(2)/params(4))+1; 
x = (0:Nx-1)*params(3); 
y = (0:Ny-1)*params(4); 
length = size(profile,1); 
  
burnerprofile = ones(Nx,Ny)*profile(length); 
centerpixelx = center(1)/params(3); 
centerpixely = center(2)/params(4); 
Rpixelx = profilex(length)/params(3); 
Rpixely = profilex(length)/params(4); 
minpixelx = floor(centerpixelx-Rpixelx); 
maxpixelx = ceil(centerpixelx+Rpixelx); 
minpixely = floor(centerpixely-Rpixely); 
maxpixely = ceil(centerpixely+Rpixely); 
%-----------Fill the snapshot matrix-------- 
for i = minpixelx:maxpixelx 
    for j = minpixely:maxpixely 
    h = sqrt((x(i)-center(1))^2+(y(j)-center(2))^2); 
    %burnerprofile(i,j) = erfc((h-D/2)*1)*(ratio-1)/2+1; 
    if (h<profilex(length)) 
       if (h>profilex(1)) 
       burnerprofile(i,j) = interp1q(profilex,profile,h); 
       else 
       burnerprofile(i,j) = interp1q(profilex,profile,profilex(2)); 
       end 
    end 
   nd  e
end 
burnerprofile = burnerprofile'; 

 88



www.manaraa.com

Create_basisv2: 
function [basis,eig_val] = f(snapshots,mval,N) 
% [basis,eig_val] = Create_basis(snapshots,mval,N) function to create 
% basis from snapshots for large data sets using SVD 
% 
% OUTPUT: 
% basis = a PxQxM tensor of M basis functions 
% eig_val = an increasing vector of the eigenvalues 
% 
% INPUT: 
% snapshots = a PxQxM tensor of the M snapshots 
% mval = the mean value used to subract from snapshots 
% N = number of basis elements to retain  
% 
% Author: Chad Lindstrom  
  
M = size(snapshots,3); %Determine number of snapshots 
rows = size(snapshots,1); 
  
mvalv = matrixtovector(mval); 
sv = matrixtovector(snapshots); 
for i = 1:M 
    c(i) = mvalv\sv(:,i);     
    sv(:,i) = sv(:,i)-mvalv*c(i); %subract mean 
end 
clear mvalv; 
%-----------Compute elements of Matrix to Determine Eigenvalues-------- 
  
sv = sv/sqrt(M); 
[U,S,V] = svd(sv,0); 
clear sv; 
eig_val = diag(S.^2); 
eig_val = flipud(eig_val); 
for i = 1:N 
    basis(:,:,i) = snapshots(:,:,1); 
    basis(:,:,i) = 0; 
    for j = 1:M 
        basis(:,:,i) = V(j,i)*(snapshots(:,:,j)-
c(j)*mval)+basis(:,:,i); 
    end 
end 
  
basis = flipdim(basis,3); 
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Matrixtovector: 
function matrixtovector = f(matrix) 
% matrixtovector = f(matrix) function to create vector from matrix 
%  
% 
% OUTPUT: 
% matrixtovector = either a single vector comprised of each column of 
% the matrix stacked on top of each other if only one input matrix is 
% given or a matrix with each column vector corresponding to each 
% matrix of the 3rd rank tensor 
% 
% INPUT: 
% matrix = either a PxQ matrix or a PxQxM tensor with M PxQ matrices 
% 
% Author: Chad Lindstrom 
  
  
M = size(matrix,3); %Determine size of matrix 
P = size(matrix,1); 
Q = size(matrix,2); 
matrixtovector = ones(P*Q,M); 
  
%-----------Change matrix(es) to vector(s)-------- 
for i = 1:M 
   for j =1:Q 
       row_start = (j-1)*P+1; 
       row_end = j*P; 
       matrixtovector(row_start:row_end,i)=matrix(:,j,i); 
   end 
end 
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Datafit2: 
Function [bestfit,resd,fiterr]=datafit(mval,basis,data,x,y,Beams,sigma) 
% [bestfit,resd,fiterr] =calculatefit(mval,basis,image,x,y,Beams,sigma) 
% Calculates the fit to a real data vector 
% 
% OUTPUT: 
% 
%  bestfit = the bestfit for the data 
%  resd = the fit residuals 
% 
% Input: 
% 
% mval = The mean matrix 
% basis = The basis used for the fit 
% data = The data vector 
% x = x coordinates of the image 
% y = y coordinates of the image 
% Beams = The beams matrix that describe the beams for inversion 
% sigma = The error in the estimation of the fit integrals  
% 
% Author: Chad Lindstrom 
  
[condnum,mval_proj] = Cond_Proj(Beams,mval,x,y,300); 
[condnum,basis_proj] = Cond_Proj(Beams,basis,x,y,300); 
%V = diag(ones(1,size(data,1))*sigma^2); 
V = diag(sigma.^2); 
[cm,stdcm,mse] = lscov(mval_proj,data,V); 
stdcm = stdcm*sqrt(1/mse); 
diff_proj = data-cm*mval_proj; 
bestfit = cm*mval; 
fiterr = (stdcm*mval_proj).^2; 
V = diag(fiterr)+V; 
[c,stdc,mse] =lscov(basis_proj,diff_proj,V); 
stdc = stdc*sqrt(1/mse); 
N = size(c); 
bestfit = cm*mval; 
fiterr = (stdcm*mval).^2; 
for i=1:N 
    bestfit = bestfit + c(i)*basis(:,:,i); 
    fiterr = fiterr+(stdc(i)*basis(:,:,i)).^2; 
end 
resd = data - cm*mval_proj-basis_proj*c; 
fiterr = sqrt(fiterr); 
  
return 
  
 
 
     
  
     

 91



www.manaraa.com

Mapthattempnew: 
function 
[tempmap,errmap,boltzmannxs,boltzmannys]=mapthattempnew(a1391_1a,a1391_
1b,a1391_2a,a1391_2b,a1391_2c,a1391_2d,a1397a,a1397b,a1397c,err1391_1a,
err1391_1b,err1391_2a,err1391_2b,err1391_2c,err1391_2d,err1397a,err1397
b,err1397c) 
% mapthattempnew is a function that creates a temperature map and 
% errormap using the frequency integrated absorption coefficients and 
% their corresponding errors from the line of sight data using a 
% Boltzmann Plot at each pixel 
% 
% boltzmannxs and boltzmannys are the x and y data points for the 
% Boltzmann plot 
% 
% Author: Ryan Givens 
  
k=.6950356; 
e1391_1a=1045.0579; s1391_1a=8.335E-22; 
e1391_1b=1474.9808; s1391_1b=1.131E-23; 
e1391_2a=136.7617; s1391_2a=1.488E-20; 
e1391_2aa=1216.1945; s1391_2aa=7.273E-23; 
e1391_2b=1216.1945; s1391_2b=2.438E-22; 
e1391_2c=224.8384; s1391_2c=5.577E-22; 
e1391_2d=1477.2974; s1391_2d=3.277-23; 
e1397a=224.8384; s1397a=1.168e-20; 
e1397b=222.0528; s1397b=4.212e-21; 
e1397c=1874.973; s1397c=5.983e-24; 
  
x_points=[e1391_1a/k, ...  
    ...e1391_1b/k, ...  
    ...e1391_2a/k, ... 
    e1391_2b/k, ... 
    ... e1391_2c/k, ... 
    ...e1391_2d/k, ...  
    e1397a/k, ... 
    ...e1397b/k, ... 
    ...e1397c/k ... 
    ]; 
  
v1391_1a=7185.59731; 
v1391_1b=7185.40077; 
v1391_2a=7181.15578; 
v1391_2aa=7181.09528; 
v1391_2b=7179.75201; 
v1391_2c=7180.39972; 
v1391_2d=7180.61301; 
v1397a=7161.4101; 
v1397b=7160.23543; 
v1397c=7160.8121; 
  
a1391_2a=a1391_2a-(s1391_2aa/s1391_2b).*a1391_2b; %correct for 
unresolved line 
  
boltz_map1391_1a=log(a1391_1a/s1391_1a*exp(-e1391_1a/k/300)*(1-exp(-
v1391_1a/k/300))); 
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boltz_map1391_1b=log(a1391_1b/s1391_1b*exp(-e1391_1b/k/300)*(1-exp(-
v1391_1b/k/300))); 
boltz_map1391_2a=log(a1391_2a/s1391_2a*exp(-e1391_2a/k/300)*(1-exp(-
v1391_2a/k/300))); 
boltz_map1391_2b=log(a1391_2b/s1391_2b*exp(-e1391_2b/k/300)*(1-exp(-
v1391_2b/k/300))); 
boltz_map1391_2c=log(a1391_2c/s1391_2c*exp(-e1391_2c/k/300)*(1-exp(-
v1391_2c/k/300))); 
boltz_map1391_2d=log(a1391_2d/s1391_2d*exp(-e1391_2d/k/300)*(1-exp(-
v1391_2d/k/300))); 
boltz_map1397a=log(a1397a/s1397a*exp(-e1397a/k/300)*(1-exp(-
v1397a/k/300))); 
boltz_map1397b=log(a1397b/s1397b*exp(-e1397b/k/300)*(1-exp(-
v1397b/k/300))); 
boltz_map1397c=log(a1397c/s1397c*exp(-e1397c/k/300)*(1-exp(-
v1397c/k/300))); 
  
weight_map1391_1a=a1391_1a./err1391_1a; 
weight_map1391_1b=a1391_1b./err1391_1b; 
weight_map1391_2a=a1391_2a./err1391_2a; 
weight_map1391_2b=a1391_2b./err1391_2b; 
weight_map1391_2c=a1391_2c./err1391_2c; 
weight_map1391_2d=a1391_2d./err1391_2d; 
weight_map1397a=a1397a./err1397a; 
weight_map1397b=a1397b./err1397b; 
weight_map1397c=a1397c./err1397c; 
  
tempmap=ones(size(a1397a)); 
errmap=tempmap; 
  
boltzmannxs=x_points; 
boltzmannys=ones(size(a1397a,1),size(a1397a,2),length(x_points)); 
  
for i=1:size(a1397a,1) 
    for j=1:size(a1397a,2) 
        y_points=[boltz_map1391_1a(i,j), ...  
            ...boltz_map1391_1b(i,j), ... 
            ...boltz_map1391_2a(i,j), ... 
            boltz_map1391_2b(i,j), ... 
            ...boltz_map1391_2c(i,j), ... 
            ...boltz_map1391_2d(i,j), ... 
            boltz_map1397a(i,j), ... 
            ...boltz_map1397b(i,j), ... 
            .. oltz_map1397c(i,j) ... .b
            ]; 
         weights=[weight_map1391_1a(i,j), ... 
            ...weight_map1391_1b(i,j), ... 
            ...weight_map1391_2a(i,j), ... 
            weight_map1391_2b(i,j), ... 
            ...weight_map1391_2c(i,j), ... 
            ...weight_map1391_2d(i,j), ... 
            weight_map1397a(i,j), ... 
            ...weight_map1397b(i,j), ... 
            ...weight_map1397c(i,j), ... 
            ]; 
        S=[ones(length(x_points),1), x_points']; 
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        [p,se,sd]=lscov(S,y_points',weights'); 
        tempmap(i,j)=-1/(p(2)); 
        errmap(i,j)=1/(p(2))^2*se(2); 
        boltzmannys(i,j,:)=y_points; 
       tempmap(180,100)  %
    end 
end 
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Reperr2: 
function [maxerr,avgerr,cmean] = reperr2(B,basis,mval,nb) 
% [maxerr,avgerr,cmean] = reperr2(B,basis,mval,nb) 
%  
% 
% OUTPUT: 
% maxerr = the maximum absolute percent error observed for all elements 
% of the training set 
% 
% avgerr = the average absolute percent error observed for all elements 
% of the training set 
% cmean = the mean value of the expansion coefficients 
% 
% INPUT: 
% B = a PxQxM tensor of snapshots (training set) 
% basis = a PxQxM tensor of basis elements created from B 
% nb = the number of basis elements to retain (the largest  
% 
% Author: Chad Lindstrom 
  
Bv = matrixtovector(B); 
basisv = matrixtovector(basis); 
mvalv = matrixtovector(mval); 
length1 = size(basisv,2); 
length2 = size(Bv,2); 
cmean = ones(length1,1); 
cmean = 0; 
avgerr = [0 0]; 
maxerr = [0 0]; 
  
for i=1:length2 
    cav = mvalv\Bv(:,i); 
    Bv2 = Bv(:,i) - cav*mvalv; 
    c = basisv(:,length1-nb+1:length1)\Bv2; 
    cmean = cmean+abs(c); 
    result = basisv(:,length1-nb+1:length1)*c+cav*mvalv; 
    abspererror = abs(Bv(:,i)-result)*100./abs(Bv(:,i)); 
    mr = max(abspererror); 
    if (mr>maxerr(1))  
        maxerr = [mr i]; 
    end   
    avr = mean(abspererror); 
    if (avr>avgerr(1)) 
        avgerr = [avr i]; 
    end 
end 
cmean = cmean/length2; 
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Create_VQbasis: 
function [basis,which]=f(snapshots,initial_codebook,N,epsilon) 
% [basis,which] = Create_VQbasis(snapshots,initial_codebook,N,epsilon); 
% function to create basis from snapshots for large data 
% 
% OUTPUT: 
% basis = a PxQxM tensor of M basis functions 
% which = a 1XM vector indicating which codevector each training set 
% image is associated with 
% 
% INPUT: 
% snapshots = a PxQxM tensor of the M snapshots 
% initial_codebook = PxQxN tensor of initial codevectors 
% N = number of basis elements desired 
% epsilon = distortion measure (small number by which to adjust average 
% basis vectors 
% 
% Author: Ryan Givens 
  
  
M = size(snapshots,3); %determines the number of snapshots given 
T = size(initial_codebook,3); %determines the number of initial 
% codevectors 
  
c = initial_codebook; 
  
  
%Begin the algorithm 
    
    D_avg_i = 5; 
    D_avg_i2 = 0; 
     
while abs((D_avg_i-D_avg_i2)/D_avg_i) > epsilon      %Continue while 
% the change in relative error is still greater than epsilon 
    for m = 1:M                 %Compare each image to each codevector 
% and to determine which codevector the image belongs to 
        difference = zeros(size(snapshots,1),size(snapshots,2),1); 
        min_dif = zeros(1,T); 
        for n = 1:T 
            difference(:,:,n) = abs(snapshots(:,:,m)-c(:,:,n)); 
            min_dif(n) = ... 
dot(reshape(difference(:,:,n),[],1),reshape(difference(:,:,n),[],1)); 
        end 
        approx(:,:,m) = c(:,:,find(min_dif==min(min_dif))); %build an 
% image set with the selected codevectors approximating snapshots 
        which_c(m) = find(min_dif==min(min_dif)); 
    end      
    for n = 1:T 
        c(:,:,n) = ... 
sum(snapshots(:,:,find(which_c==n)),3)/size(find(which_c==n),2); 
    end 
    D_avg_i2 = D_avg_i; 
    D_avg_i = 0; 
    for p = 1:M         %Find the error associated with the 
% approximated image set 
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        D_avg_i = D_avg_i+dot(reshape((snapshots(:,:,M) ... 
-approx(:,:,m)),1,[]),reshape((snapshots(:,:,M)-approx(:,:,m)),1,[])); 
    end 
  
    D_avg_i = 1/M/(size(snapshots,1)*size(snapshots,2))*D_avg_i; 
end 
  
basis = c; 
which = which_c; 
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Bestratio: 
function [bestratio,ratiostotry,sumresd]=bestratio(R,C_list, ... 
density,T,rratio,maxT,params,data,Beams) 
% function to determine the amount by which to scale the cfd radius 
% It returns the ratio which had the smallest residual when fit to the 
% data. 
% 
% Author: Ryan Givens 
 
ratiostotry=(75:125)./100; 
sumresd=ones(1,length(ratiostotry)); 
  
for i=1:length(ratiostotry) 
    i 
    [A,B,x,y]=burnerbasisv2(C_list,density,T,rratio,params,R* ... 
ratiostotry(i),maxT); 
    m=mean(B,3); 
    [basis,eig]=Create_basisv2(B,m,2); 
    [fit,resd,err]=datafit2(m,basis,data(:,1),x,y,Beams,data(:,2)); 
    sumresd(i)=sum(resd.^2); 
end 
figure(8009) 
plot(ratiostotry,sumresd) 
b=find(sumresd==min(sumresd)); 
bestratio=ratiostotry(b); 
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Densmap: 
function [nmap,nerrmap]=densmap(fit,fiterr,tmap,terrmap) 
% function to create a density map from the temperature map.  Errors 
% are propogated to the nerrmap 
% 
% Author: Ryan Givens 
  
Sref=1.168e-20; 
nu=7161.4101; 
k=.695036; 
E0=224.838; 
nmap=ones(size(fit)); 
nerrmap=nmap; 
  
for i=1:size(fit,1) 
    for j=1:size(fit,2) 
        S=Sref*partition(300,nu)/partition(tmap(i,j),nu)* ...  
  exp(-E0/k/tmap(i,j))/exp(-E0/k/300)*(1-exp(- ...   
  nu/k/tmap(i,j)))/(1-exp(-nu/k/300)); 
        nmap(i,j)=fit(i,j)/S; 
        nerrmap(i,j)=abs(fiterr(i,j)/S-fit(i,j)*(Sref* ...    
  partition(300,nu)/exp(-E0/k/300)/(1-exp(-nu/k/300))*... 
            exp(-E0/k/tmap(i,j))/partition(tmap(i,j),nu))^-...   
  2*partition(tmap(i,j),nu)*exp(-E0/k/tmap(i,j))*... 
            E0/k/(tmap(i,j))^2/(partition(tmap(i,j),nu))^2*Sref*... 
  partition(300,nu)/exp(-E0/k/300)/(1-exp(- ...    
  nu/k/300))*terrmap(i,j)); 
    end 
end 
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Tophatfixedcold: 
function 
[basis,resdmap,x,y]=tophat(centers,diameters,params,data1397,... 
 Beams,sigma) 
%function to create an optimized two zone basis image with the cold 
%region fit only to beam paths not passing through the flame. 
% 
%input: 
%centers: array of center locations about 0 to try 
%diameters: array of diameters to try 
%params: [Lx,Ly,dx,dy] 
%a1397: 1397 integrated absorptions 
%Beams: Beam positions 
%sigma: errors in integrated absorptions 
% 
%Output: 
%resdmap: 2D map of sum(abs(resdiduals)) 
% 
%Author: Ryan Givens 
  
resdmap=ones(length(centers)-1,length(diameters)); 
normpathlength=sqrt((Beams(1,1,1)-Beams(1,2,1))^2 ... 
        +(Beams(2,1,1)-Beams(2,2,1))^2); 
for i=1:length(centers)-1 
    i 
    for j=1:length(diameters) 
        [basisa,x,y]=burner([centers(i),centers(length(centers))],... 
  diameters(j),2,params); 
        [basisb,x,y]=burner([centers(i),centers(length(centers))],... 
  diameters(j),1,params); 
        basisc=basisa-basisb; 
        basisc(:,:,2)=basisa-2*basisc(:,:,1); 
        %get cold basis function 
        
basiscold=basisc(:,:,2)*(data1397(1)+data1397(7))/2/normpathlength; 
        %get projection matrix (integrated area of cold path length of 
each 
        %path) 
        [cond,projmat]=Cond_Proj(Beams,basiscold,x,y,300); 
        %subtract out cold contribution to integrated absorptions 
        temp_abs=data1397-projmat; 
        %get hot basis function 
        basishot=basisc(:,:,1); 
        %fit to hot basis function 
        [bestfit,resd,fiterr] = ...       
  datafit3(basishot,temp_abs,x,y,Beams,sigma); 
        %bestfits_arr(:,:,i)=bestfit+basiscold; 
     
       % 
[basisa,x,y]=burner([centers(i),centers(length(centers))],diameters(j),
2,params); 
      %  
[basisb,x,y]=burner([centers(i),centers(length(centers))],diameters(j),
1,params); 
      %  basis=basisa-basisb;    %top 
      %  basis(:,:,2)=basisa-2*basis(:,:,1); %bottom 
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      %  
[bestfit,resd,fiterr]=datafit3(basis,data1397,x,y,Beams,sigma); 
        resdmap(i,j)=sum(sum(abs(resd))); 
    end 
     
end 
  
x=diameters; 
y=centers(1:length(centers)-1); 
[centerfit,diameterfit]=find(resdmap==min(min(resdmap))); 
bestcenter=[centers(centerfit),centers(length(centers))] 
bestdiameter=diameters(diameterfit) 
[basisa,x,y]=burner(bestcenter,bestdiameter,2,params); 
[basisb,x,y]=burner(bestcenter,bestdiameter,1,params); 
basis=basisa-basisb; 
basis(:,:,2)=basisa-2*basis(:,:,1); 
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